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0. Some notation

We use standard notation from probability:

• (Ω,F , IP) stands for a probability space.

• B(IR) is the Borel σ-algebra on IR, i.e. B(IR) is the smallest σ-algebra
containing all open intervals (a, b) with −∞ < a < b < ∞ (or equiva-
lently, all open subsets of IR). Similarly, B(IRn) is the smallest σ-algebra
containing all open subsets of IRn.

• A map Z : Ω→ IR is called a random variable if Z is measurable as a
map from (Ω,F) into (IR,B(IR)), i.e.

Z−1(B) := {ω ∈ Ω : Z(ω) ∈ B} ∈ F

for all Borel sets B ∈ B(IR).

• The Lebesgue spaces are denoted by Lp = Lp(Ω,F , IP) with

‖f‖Lp :=

(∫
Ω

|f(ω)|pdIP(ω)

) 1
p

for p ∈ (0,∞).

Definition 0.1. A family of random variables X = (Xt)t≥0 with Xt : Ω→ IR
is called stochastic process with index set I = [0,∞).

When do two stochastic processes X and Y coincide? There are several
notions for this:

Definition 0.2. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be stochastic processes
on (Ω,F , IP). The processes X and Y are indistinguishable if and only if

IP(Xt = Yt, t ≥ 0) = 1.

The definition automatically requires that the set {ω ∈ Ω : Xt(ω) =
Yt(ω), t ≥ 0} is measurable which is not the case in general. Another form
of coincidence is the following:

Definition 0.3. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be stochastic processes on
(Ω,F , IP). The processes X and Y are modifications of each other provided
that

IP(Xt = Yt) = 1 for all t ≥ 0.
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Up to now we have to have that the processes are defined on the same
probability space. This can be relaxed as follows:

Definition 0.4. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be stochastic processes
on (Ω,F , IP) and (Ω′,F ′, IP′), respectively. Then X and Y have the same
finite-dimensional distributions if

IP((Xt1 , . . . , Xtn) ∈ B) = IP′((Yt1 , . . . , Ytn) ∈ B)

for all 0 ≤ t1 < . . . < tn < ∞, where n = 1, 2, . . . and B ∈ B(IRn).

Proposition 0.5. (i) If X and Y are indistinguishable, then they are mod-
ifications of each other. The converse implication is not true in general.

(ii) If X and Y are modifications from each other, then they have the same
finite-dimensional distributions. There are examples of stochastic pro-
cesses defined on the same probability space having the same finite-
dimensional distributions but which are not modifications of each other.

There are situations in which two processes are indistinguishable when they
are modifications of each other.

Proposition 0.6. Assume that X and Y are modifications of each other and
that all trajectories of X and Y are left-continuous (or right-continuous).
Then the processes X and Y are indistinguishable.

We also need different types of measurability for our stochastic processes.
First let us recall the notion of a filtration and a stochastic basis.

Definition 0.7. Let (Ω,F , IP) be a probability space. A family of σ-algebras
(Ft)t≥0 is called filtration if Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t < ∞. The
quadruple (Ω,F , IP, (Ft)t≥0) is called stochastic basis.

The different types of measurability are given by

Definition 0.8. Let X = (Xt)t≥0, Xt : Ω → IR be a stochastic process on
(Ω,F , IP) and let (Ft)t≥0 be a filtration.

(i) The process X is called measurable provided that the function (ω, t)→
Xt(ω) considered as map between Ω× [0,∞) and IR is measurable with
respect to F × B([0,∞)) and B(IR).
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(ii) The process X is called progressively measurable with respect to a
filtration (Ft)t≥0 provided that for all T ≥ 0 the function (ω, t)→ Xt(ω)
considered as map between Ω× [0, T ] and IR is measurable with respect
to FT × B([0, T ]) and B(IR).

(iii) The process X is called adapted with respect to a filtration (Ft)t≥0

provided that for all t ≥ 0 one has that Xt is Ft-measurable.

Proposition 0.9. A process which is progressively measurable is measur-
able and adapted. All other implications between progressively measurable,
measurable, and adapted do not hold true in general.

Proposition 0.10. An adapted process such that all trajectories are left-
continuous (or right-continuous) is progressively measurable.

Finally let us recall the notion of a martingale.

Definition 0.11. Let (Xt)t≥0 be (Ft)t≥0-adapted and such that IE|Xt| <∞
for all t ≥ 0.

(i) X is called martingale provided that for all 0 ≤ s ≤ t <∞ one has

IE(Xt | Fs) = Xs a.s.

(ii) X is called sub-martingale provided that for all 0 ≤ s ≤ t <∞ one has

IE(Xt | Fs) ≥ Xs a.s.

(iii) X is called super-martingale provided that for all 0 ≤ s ≤ t < ∞ one
has that

IE(Xt | Fs) ≤ Xs a.s.

Finally we use

Definition 0.12. Let X = (Xt)t≥0 be a stochastic process. The process X
is continuous provided that t→ Xt(ω) is continuous for all ω ∈ Ω.
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1. and 2. Lecture

Gaussian processes and Brownian motion

Gaussian processes form a class of stochastic processes used in several
branches in pure mathematics and in applied mathematics. Some typical
examples are the following:

• The modeling of telecommunication traffic, where the fractional Brow-
nian motion is used.

• In Real Analysis the Laplace operator is directly connected to the Brow-
nian motion.

• In the theory of stochastic processes many processes can be represented
and investigated as transformations of the Brownian motion.

We introduce Gaussian processes in two steps. First we recall Gaussian
random variables with values in IRn, then we turn to the processes.

Definition 1.1. (i) A random variable f : Ω → IR is called Gaussian
provided that IP(f = m) = 1 for some m ∈ IR or there are m ∈ IR and
σ > 0 such that

IP(f ∈ B) =

∫
B

e−
(x−m)2

2σ2
dx√
2πσ

for all B ∈ B(IR). The parameters m and σ2 are called expected value
and variance, respectively.

(ii) A random vector f = (f1, ..., fn) : Ω→ IRn is called Gaussian provided
that for all a = (a1, ..., an) ∈ IRn one has that

〈f(ω), a〉 :=
n∑
i=1

aifi(ω)

is Gaussian. The parameters m = (m1, ...,mn) with mi := IEfi and
σ = (σij)

n
i,j=1 with

σij := IE(fi −mi)(fj −mj)

are called mean (vector) and covariance (matrix), respectively.
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For a Gaussian random variable we can compute the expected value and the
variance by

m = IEf and σ2 = IE(f −m)2.

Now we introduce Gaussian processes.

Definition 1.2. A stochastic process X = (Xt)t≥0, Xt : Ω → IR, is called
Gaussian provided that for all n = 1, 2, ... and all 0 ≤ t1 < t2 < · · · < tn <∞
one has that

(Xt1 , ..., Xtn) : Ω→ IRn

is a Gaussian random vector. Moreover, we let

mt := IEXt and Γ(s, t) := IE(Xs −ms)(Xt −mt).

The process m = (mt)t≥0 is called mean (process) and the process
(Γ(s, t))s,t≥0 covariance (process).

Up to now we only defined Gaussian processes, however we do not know yet
whether they exist. The main result in this respect is

Proposition 1.3. Let (Γ(s, t))s,t≥0 be positive semi-definite and symmetric,
that means

n∑
i,j=1

Γ(ti, tj)aiaj ≥ 0 and Γ(s, t) = Γ(t, s)

for all s, t, t1, ..., tn ≥ 0 and a1, ..., an ∈ IR. Then there exists a probability
space (Ω,F , IP) and a Gaussian process X = (Xt)t≥0 defined on (Ω,F , IP)
with

(i) IEXt = 0,

(ii) IEXsXt = Γ(s, t).

Remark 1.4. Given any stochastic process X = (Xt)t≥0 ⊆ L2 with IEXt = 0
and Γ(s, t) := IEXsXt we always have that Γ is positive semi-definite and
symmetric.

Let us consider some examples.
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Example 1.5 (Brownian motion). We let

Γ(s, t) := min {s, t} =

∫ ∞
0

χ[0,s](ξ)χ[0,t](ξ)dξ

so that

n∑
i,j=1

Γ(ti, tj)aiaj =

∫ ∞
0

n∑
i,j=1

aiχ[0,ti](ξ)ajχ[0,tj ](ξ)dξ

=

∫ ∞
0

(
n∑
i=1

aiχ[0,ti](ξ)

)2

dξ

≥ 0.

Example 1.6 (Brownian bridge). Here we take for a moment the time-
interval [0, 1] instead of [0,∞) and believe that all things from before can be
done in the same way. We let

Γ(s, t) :=

{
s(1− t) : 0 ≤ s ≤ t ≤ 1
t(1− s) : 0 ≤ t ≤ s ≤ 1

and want to get a Gaussian process returning to zero at time T = 1. The
easiest way to show that Γ is positive semi-definite is to find one realization
of this process: we take the Brownian motion W = (Wt)t≥0 like in Example
1.5, let

Xt := Wt − tW1

and get that

IEXsXt = IE(Ws − sW1)(Wt − tW1)

= IEWsWt − tIEWsW1 − sIEW1Wt + stIEW 2
1

= s− ts− st+ st

= s(1− t)

for 0 ≤ s ≤ t ≤ 1.

Example 1.7 (Fractional Brownian motion). The Fractional Brownian mo-
tion was considered in 1941 by Kolmogorov in connection with turbu-
lence and in 1968 by Mandelbrot and Van Ness as fractional Gaussian

7



noise. Let H ∈ (0, 1) be the Hurst index of the fractional Brownian motion
(Hurst was an English hydrologist) and define the covariance function Γ as

Γ(s, t) :=
1

2

(
t2H + s2H − |t− s|2H

)
.

This covariance function can be obtained (exercise) by looking for a stochastic
process X = (Xt)t≥0 such that:

• X is a continuous Gaussian process of mean zero with X0 ≡ 0.

• The increments are stationary, i.e. Xt − Xs and Xt−s have the same
distribution for 0 ≤ s < t <∞.

• The process is self-similar with exponent θ ∈ (0, 1), i.e. the finite
dimensional distributions of (XAt)t≥0 and of AH(Xt)t≥0 coincide for
A > 0.

For H = 1/2 we get Γ(s, t) = min {s, t}, that means the Brownian motion
from Example 1.5. The main problem consists in showing that Γ is positive
semi-definite. To give the idea for this proof let t0 := 0 and a0 := −

∑n
i=1 ai

so that
∑n

i=0 ai = 0 and

n∑
i,j=1

Γ(ti, tj)aiaj = −1

2

n∑
i,j=0

|ti − tj|2Haiaj.

Take ε > 0 so that

n∑
i,j=0

e−ε|ti−tj |
2H

aiaj =
n∑

i,j=0

(
e−ε|ti−tj |

2H − 1
)
aiaj

= −ε
n∑

i,j=0

|ti − tj|2Haiaj + o(ε)

= 2ε
n∑

i,j=1

Γ(ti, tj)aiaj + o(ε).

Hence it is sufficient to show that

n∑
i,j=0

e−ε|ti−tj |
2H

aiaj ≥ 0.
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Fact: There exists a random variable Z such that

IEeitZ = e−ε|t|
2H

.

The random variable if 2H-stable (a random variable Z is p-stable for some
0 < p ≤ 2 if αZ + βZ ′ and (|α|p + |β|p)1/pZ have the same distribution if
α, β ∈ IR and Z ′ is an independent copy of Z). Since characteristic functions
are positive semi-definite, we are done.

Up to now we have constructed stochastic processes with certain finite-
dimensional distributions. In the case of Gaussian processes this can be
done through the covariance structure. Now we go the next step and provide
the path-properties we would like to have. Here we use the fundamental

Proposition 1.8 (Kolmogorov). Let X = (Xt)t∈[0,1], Xt : Ω → IR, be a
family of random variables such that there are constants c, ε > 0 and p ∈
[1,∞) with

IE|Xt −Xs|p ≤ c|t− s|1+ε.

Then there is a modification Y of the process X such that

IE sup
s 6=t

(
|Yt − Ys|
|t− s|α

)p
<∞

for all 0 < α < ε
p

and that all trajectories are continuous.

Remark 1.9. In particular we get from Proposition 1.8:

(i) The function f : Ω→ [0,∞] given by

f(ω) := sup
s 6=t

|Yt(ω)− Ys(ω)|
|t− s|α

is a measurable function.

(ii) The function f is almost surely finite (otherwise IE|f |p would be infi-
nite), so that there is a set Ω0 of measure one such that for all ω ∈ Ω0

there is a c(ω) > 0 such that

|Yt(ω)− Ys(ω)| ≤ c(ω)|t− s|α

for all s, t ∈ [0, 1] and ω ∈ Ω0. In particular, the trajectories t→ Yt(ω)
are continuous for ω ∈ Ω0.
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Let us apply the proposition above to the Brownian motion.

Proposition 1.10. Let W = (Wt)t≥0 be a Gaussian process with mean
m(t) = 0 and covariance Γ(s, t) = IEWsWt = min {s, t}. Then there is
a modification B = (Bt)t≥0 of W = (Wt)t≥0 such that all trajectories are
continuous and

IE

(
sup

0≤s<t≤T

|Bt −Bs|
|t− s|α

)p
<∞

for all 0 < α < 1
2
, 0 < p <∞, and T > 0.

Proof. First we fix T > 0 and define

Xt := WtT

for t ∈ [0, 1]. Then, for p ∈ (0,∞),

IE|Xt −Xs|p = IE|WtT −WsT |p

= IE|W(t−s)T |p

=
1√

2π(t− s)T

∫
IR

|ξ|pe−
ξ2

2(t−s)T dξ

= ((t− s)T )
p
2

1√
2π

∫
IR

|ξ|pe−
ξ2

2 dξ

= γp(t− s)
p
2T

p
2

where we used that the covariance structure implies Wb −Wa ∼ N(0, b− a)
for 0 ≤ a < b <∞. Now fix α ∈ (0, 1/2) and p ∈ (2,∞) such that

1
1
2
− α

< p <∞ and 0 < α <
ε

p
=

1

2
− 1

p

and
IE|Xt −Xs|p ≤ γpT

p
2 (t− s)1+ε.

Proposition 1.8 implies the existence of a path-wise continuous modification
Y = Y (α, p) of X such that

IE sup
0≤s<t≤1

(
|Yt(α, p)− Ys(α, p)|

|t− s|α

)p
<∞. (1)
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Replacing p by q ∈ (0, p) the same inequality remains true since ‖ · ‖Lq ≤
‖ · ‖Lp for 0 < q < p < ∞. Hence for all 0 < α < 1/2 and 0 < p < ∞
we find a modification Y (α, p) such that (1) is satisfied. However, since
Y (α1, p1) and Y (α2, p2) are continuous and modifications of each other, they
are indistinguishable. Hence we can pick one process Y = Y (p0, α0) which
satisfies (1) for all 0 < α < 1/2 and all 0 < p < ∞. Coming back to our
original time-scale we have found a continuous modification (BT

t )t∈[0,T ] of
(Wt)t∈[0,T ] such that

IE sup
0≤s<t≤T

(
|BT

s −BT
t |

|t− s|α

)p
<∞

for all 0 < α < 1/2 and 0 < p < ∞. We are close to the end, we only have
to remove the remaining parameter T . For this purpose we let

ΩT :=
{
ω ∈ Ω : BT

t (ω) = Wt(ω), t ∈ Q ∩ [0, T ]
}

and Ω̃ :=
⋂∞
N=1 ΩN so that IP(Ω̃) = 1 and

BN1
t (ω) = BT2

t (ω) for t ∈ Q ∩ [0,min {N1, N2}]

and ω ∈ Ω̃. Since (BNi
t )t∈[0,Ni] are continuous processes we derive that

BN1
t (ω) = BN2

t (ω) for t ∈ [0,min {N1, N2}]

whenever ω ∈ Ω̃. Hence we have found one process (Bt)t≥0 on Ω̃ and may

set the process B zero on Ω \ Ω̃.

Now we define the notion of Brownian motion we need later.

Definition 1.11. Let (Ω,F , IP; (Ft)t≥0) be a stochastic basis. An adapted
stochastic process B = (Bt)t≥0, Bt : Ω → IR, is called standard (Ft)t≥0-
Brownian motion provided that

(i) B0 ≡ 0,

(ii) for all 0 ≤ s < t <∞ the random variable Bt−Bs is independent from
Fs that means that

IP(C ∩ {Bt −Bs ∈ A}) = IP(C)IP(Bt −Bs ∈ A)

for C ∈ Fs and A ∈ B(IR),
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(iii) for all 0 ≤ s < t <∞ one has Bt −Bs ∼ N(0, t− s),

(iv) for all ω ∈ Ω the trajectories t→ Bt(ω) are continuous.

The two-dimensional Brownian motion was observed in 1828 by Robert
Brown as diffusion of pollen in water. Later the one-dimensional Brownian
motion was used by Louis Bachelier around 1900 in modeling of financial
markets and in 1905 by Albert Einstein. A first rigorous proof of its
(mathematical) existence was given by Norbert Wiener in 1921. Later
on, various different proofs of its existence were given.

Definition 1.12. The stochastic basis (Ω,F , IP; (Ft)t≥0) satisfies the usual
conditions provided that

(i) (Ω,F , IP) is complete,

(ii) A ∈ Ft for all A ∈ F with IP(A) = 0 and t ≥ 0,

(iii) the filtration (Ft)t≥0 is right-continuous that means that

Ft =
⋂
ε>0

Ft+ε.

Proposition 1.13. There is a stochastic basis (Ω,F , IP; (Ft)t≥0) satisfying
the usual conditions with a standard (Ft)t≥0-Brownian motion B = (Bt)t≥0.

Proof. (a) We take the process B = (Bt)t≥0 from Proposition 1.10, let FBt :=
σ(Bs : s ∈ [0, t]), and prove that it is a (FBt )t≥0-Brownian motion.
(i) Since IEB0B0 = 0 so that B0 = 0 a.s. we can set the whole process B on
the null-set {B0 6= 0} to zero and the conclusion of Proposition 1.10 is still
satisfied and we can assume w.l.o.g. that B0 ≡ 0.
(iv) follows directly from Proposition 1.10.
(iii) follows from IE(Bt −Bs) = 0,

IE(Bt −Bs)
2 = t− 2 min {t, s}+ s = t− s,

and the fact that Bt −Bs is a Gaussian random variable.
(ii) Let 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ s < t. The random variables
Bt−Bs, Bs−Bsn , ..., Bs2 −Bs1 , Bs1 are independent since they are Gaussian
random variables and any two of them are uncorrelated. Consequently

IP(Bs1 ∈ A1, ..., Bsn ∈ An, Bt −Bs ∈ A)
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= IP((Bs1 , ..., Bsn) ∈ A1 × · · · × An, Bt −Bs ∈ A)

= IP((Bs1 , Bs2 −Bs1 ..., Bsn −Bsn−1) ∈ C,Bt −Bs ∈ A)

= IP((Bs1 , Bs2 −Bs1 ..., Bsn −Bsn−1) ∈ C)IP(Bt −Bs ∈ A)

= IP(Bs1 ∈ A1, ..., Bsn ∈ An)IP(Bt −Bs ∈ A)

where

C := {(y1, ..., yn) ∈ IRn : y1 ∈ A1, y1 + y2 ∈ A2, ...., y1 + · · ·+ yn ∈ An} .

Since the events {Bs1 ∈ A1, ..., Bsn ∈ An} generate FBs we can apply the π-
system theorem and are done.

(b) Without less of generality we can assume that F = σ(Bt : t ≥ 0). We let

N := {A ⊆ Ω : there exists a B ∈ F with A ⊆ B and IP(B) = 0} ∪ {∅} .

Then one has:

• If G be a sub-σ-algebra of F , then B ∈ G ∨ N if and only if there is a
A ∈ G such that A∆B ∈ N .

• The measure IP can be extended to a measure ĨP on F ∨N by ĨP(B) :=
IP(A) for A ∈ F such that A∆B ∈ N .

The probability space (Ω, F̃ , ĨP) is called completion of (Ω,F , IP) and (Ft)t≥0

with Ft := FBt ∨N is called augmentation of (FBt )t≥0.

Now one has to show that B is an (Ft)t≥0-Brownian motion as well. Here we
only have to check

(ii) Assume C ∈ Fs and find an C̃ ∈ FBs such that IP(C∆C̃) = 0 where we

denote the extension ĨP of IP again by IP. Taking A ∈ B(IR) we get that

IP({Bt −Bs ∈ A} ∩ C) = IP({Bt −Bs ∈ A} ∩ C̃)

= IP(Bt −Bs ∈ A)IP(C̃) = IP(Bt −Bs ∈ A)IP(C).

The filtration (Ft)t≥0 is right-continuous that means that

Ft =
⋂
ε>0

Ft+ε.

The right-hand side continuity of the filtration (Ft)t≥0 is non-trivial and not
proved here.
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A. For extended reading

One can prove the existence of the Gaussian processes by analyzing the finite
dimensional distributions of a stochastic process X = (Xt)t≥0. What are the
properties we can expect? From now we use the index set

∆ := {(t1, ..., tn) : n ≥ 1, t1, ..., tn are distinct} .

Then the family (µt1,...,tn)(t1,...,tn)∈∆ with

µt1,...,tn(B) := IP((Xt1 , ..., Xtn) ∈ B)

defines a family of measures so that

µt1,...,tn(B1 × · · · ×Bn) = µ(tπ(1),...,tπ(n))(Bπ(1) × · · · ×Bπ(n)),

µt1,...,tn(B1 × · · · ×Bn−1 × IR) = µt1,...,tn−1(B1 × · · · ×Bn−1)

for all B1, ..., Bn ∈ B(IR) and all permutations π : {1, ..., n} → {1, ..., n}.
This is our starting point:

Definition 1.14. A family of probability measures (µt1,...,tn)(t1,...,tn)∈∆, where
µt1,...,tn is a measure on B(IRn) is called consistent provided that

(i) µt1,...,tn(B1 × · · · × Bn) = µ(tπ(1),...,tπ(n))(Bπ(1) × · · · × Bπ(n)) for all
n = 1, 2, ..., B1, ..., Bn ∈ B(IR), and all permutations π : {1, ..., n} →
{1, ..., n},

(ii) µt1,...,tn(B1× · · ·×Bn−1× IR) = µt1,...,tn−1(B1× · · ·×Bn−1) for all n ≥ 2
and B1, ..., Bn−1 ∈ B(IR).

We show that a consistent family of measures can be derived from one mea-
sure. The measure will be defined on the following σ-algebra:

Definition 1.15. We let σ
(

IR[0,∞)
)

be the smallest σ-algebra which contains

all cylinder sets
B := {(ξt)t≥0 : (ξt1 , ..., ξtn) ∈ A}

for (t1, ..., tn) ∈ ∆ and A ∈ B(IRn).
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Proposition 1.16 (Daniell 1918, Kolmogorov 1933). Assume a con-
sistent family (µt1,...,tn)(t1,...,tn)∈∆ of probability measures. Then there exists a

probability measure µ on B(IR[0,∞)) such that

µ((ξt)t≥0 : (ξt1 , ..., ξtn) ∈ A) = µt1,...,tn(A)

for all (t1, ..., tn) ∈ ∆ and A ∈ B(IRn).

Proof. We only give the idea of the proof. Let A be the algebra of cylinder
sets

B := {(ξt)t≥0 : (ξt1 , ..., ξtn) ∈ A}
with (t1, ..., tn) ∈ ∆ and A ∈ B(IRn), that means we have that

• IR[0,∞) ∈ A,

• B1, ..., Bn ∈ B implies that B1 ∪ · · · ∪Bn ∈ B,

• B ∈ A implies that Bc ∈ A.

Now we define ν : A → [0, 1] by

ν((ξt)t≥0 : (ξt1 , ..., ξtn) ∈ A) := µt1,...,tn(A).

In fact, the definition is correct. Assume that

{(ξt)t≥0 : (ξs1 , ..., ξsm) ∈ A} = {(ξt)t≥0 : (ξt1 , ..., ξtn) ∈ B} .

Let (r1, ..., rN) ∈ ∆ such that {r1, ..., rN} = {s1, ..., sm, t1, ..., tn}. By adding
coordinates we find an C ∈ B(IRN) such that the sets above are equal to

{(ξt)t≥0 : (ξr1 , ..., ξrN ) ∈ C} .

By the consistency we have that

µs1,...,sm(A) = µr1,...,rN (C) = µt1,...,tn(B).

More difficult would be to check that ν is σ-additive on A, which means that

ν

(
∞⋃
n=1

Bn

)
=
∞∑
n=1

ν(Bn)

for B1, B2, ... ∈ A, Bi ∩ Bj = ∅ for i 6= j, and
⋃∞
n=1Bn ∈ A. This we leave

out for the moment. Having this we might finish with Carathéodory’s
extension theorem.
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As an application we get the

Proof of Proposition 1.3. We will construct a consistent family of probability
measures. Given (t1, ..., tn) ∈ ∆, we let µt1,...,tn be the Gaussian measure on
IRn with mean zero and covariance∫

IRn
ξiξjdµt1,...,tn(ξ1, ..., ξn) = Γ(ti, tj).

If the measure exists, then it is unique. To obtain the measure we let C :=
(Γ(ti, tj))

n
i,j=1, so that C is symmetric and positive semi-definite. We know

from algebra that there is a matrix A such that C = AAT . Let γn be
the standard Gaussian measure on IRn and µ be the image with respect to
A : IRn → IRn. Then∫

IRd
〈x, ei〉dµ(x) =

∫
IRd
〈Ax, ei〉dγn(x) = 0

and ∫
IRn

〈x, ei〉〈x, ej〉dµ(x) =

∫
IRn

〈Ax, ei〉〈Ax, ej〉dγn(x)

=

∫
IRn

〈x,AT ei〉〈x,AT ej〉dγn(x)

= 〈AT ei, AT ej〉
= 〈ei, AAT ej〉
= 〈ei, Cej〉
= Γ(ti, tj).

The defined family of measures is easily seen to be consistent: given a per-
mutation π : {1, ..., n} → {1, ..., n} we have that the covariance of µtπ(1),...,tπ(n)
is Γ(tπ(i), tπ(j)) which proves property (i). Hence µtπ(1),...,tπ(n) can be obtained
from µ by permutation of the coordinates. To prove that

µt1,...,tn−1,tn(B1 × · · · ×Bn−1 × IR) = µt1,...,tn−1(B1 × · · · ×Bn−1)

we consider the linear map A : IRn → IRn−1 with A(ξ1, ..., ξn) := (ξ1, ..., ξn−1)
so that

A−1(B1 × · · · ×Bn−1) = B1 × · · · ×Bn−1 × IR
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and

µt1,...,tn−1,tn(B1 × · · · ×Bn−1 × IR) = µt1,...,tn−1,tn(A−1(B1 × · · · ×Bn−1))

and we need to show that

ν := µt1,...,tn−1,tn(A−1(·)) = µt1,...,tn−1 .

The measure ν is the image measure of µt1,...,tn−1,tn with respect to A so that
it is a Gaussian measure. Moreover,∫

IRn−1

ηiηjdν(η1, ..., ηn−1)

=

∫
IRn
〈Aξ, ei〉〈Aξ, ej〉dµt1,...,tn(ξ)

=

∫
IRn
〈ξ, AT ei〉〈ξ, AT ej〉dµt1,...,tn(ξ)

=
n∑

k,l=1

〈ek, AT ei〉〈el, AT ej〉
∫

IRn
〈ξ, ek〉〈ξ, el〉dµt1,...,tn(ξ)

=
n∑

k,l=1

〈ek, AT ei〉〈el, AT ej〉σkl

=
n∑

k,l=1

〈Aek, ei〉〈Ael, ej〉σkl

=
n−1∑
k,l=1

〈ek, ei〉〈el, ej〉σkl

= σij.

Now the process X = (Xt)t≥0 is obtained by Xt : IR[0,∞) → IR with
Xt((ξs)s≥0) := ξt.

Proof of Proposition 1.8. (a) For m = 1, 2, ... we let

Dm :=

{
0,

1

2m
, ...,

2m

2m

}
and D :=

∞⋃
m=1

Dm.

Moreover, we set

∆m :=
{

(s, t) ∈ Dm ×Dm : |s− t| = 2−m
}

and Km := sup
(s,t)∈∆m

|Xt −Xs|.
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Then card(∆m) ≤ 22m and

IEKp
m = IE sup

(s,t)∈∆m

|Xt −Xs|p

≤
∑

(s,t)∈∆m

IE|Xt −Xs|p

≤ card(∆m)c

(
1

2m

)1+ε

≤ 2c2m2−m2−mε

= 2c2−mε.

(b) Let s, t ∈ D and

Sk := max {sk ∈ Dk : sk ≤ s} ∈ Dk

Tk := max {tk ∈ Dk : tk ≤ t} ∈ Dk

so that Sk ↑ s, Tk ↑ t, and Sk = s and Tk = t for k ≥ k0. For |t − s| ≤ 2−m

we get that

Xs −Xt =
∞∑
i=m

(
XSi+1

−XSi

)
+XSm +

∞∑
i=m

(
XTi −XTi+1

)
−XTm

where we note that the sums are finite sums, that |Tm − Sm| ∈ {0, 2−m},
Si+1 − Si ∈

{
0, 2−(i+1)

}
, and that Ti+1 − Ti ∈

{
0, 2−(i+1)

}
. Hence

|Xt −Xs| ≤ Km + 2
m∑
i=1

Ki+1 ≤ 2
∞∑
i=m

Ki.

(c) Let

Mα := sup

{
|Xt −Xs|
|t− s|α

: s, t ∈ D, s 6= t

}
.

Now we estimate Mα from above by

Mα = sup
m=0,1,...

sup

{
|Xt −Xs|
|t− s|α

: s, t ∈ D, s 6= t, 2−m−1 ≤ |t− s| ≤ 2−m
}

≤ sup
m=0,1,...

2(m+1)α sup
{
|Xt −Xs| : s, t ∈ D, s 6= t, |t− s| ≤ 2−m

}
18



≤ 2 sup
m=0,1,...

2(m+1)α

∞∑
i=m

Ki

≤ 21+α

∞∑
i=0

2αiKi,

where we used step (b), and

‖Mα‖Lp ≤ 21+α

∞∑
i=0

2αi‖Ki‖Lp

≤ 21+α

∞∑
i=0

2αi(2c)
1
p2−

iε
p

= 21+α(2c)
1
p

∞∑
i=0

2i(α−
ε
p)

< ∞

where we used step (a).
(d) Hence there is a set Ω0 ⊆ Ω with IP(Ω0) = 1 such that t → Xt(ω) is
uniformly continuous on D for ω ∈ Ω0. We define

Yt(ω) :=


Xt(ω) : ω ∈ Ω0, t ∈ D

lims↑t,s∈DXs(ω) : ω ∈ Ω0, t 6∈ D
0 : ω 6∈ Ω0

.

It remains to show that IP(Xt = Yt) = 1. Because of our assumption we have
that

‖Xtn −Xt‖Lp → 0 as tn ↑ t.

Take tn ∈ D and find a subsequence (nk)
∞
k=1 such that

IP(lim
k
Xtnk

= Xt) = 1.

Since IP(limkXtnk
= Yt) = 1 by construction, we are done.
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3. Lecture

Properties of the Brownian motion

Proposition 3.1. The trajectories of the standard Brownian motion are
Hölder continuous with exponent α ∈ (0, 1/2), i.e. the set

Aα,T :=

{
ω ∈ Ω : sup

0≤s<t≤T

|Bt(ω)−Bs(ω)|
|t− s|α

<∞
}

is measurable and of measure one for all α ∈ (0, 1/2) and T > 0.

Proof. Since the Brownian motion is continuous we get that Aα,T ∈ F . More-
over, IEBsBt = min {s, t} implies by Proposition 1.10 that there is a continu-

ous modification B̃ = (B̃t)t≥0 of B such that the corresponding set Ãα,T has

measure one. However, B and B̃ are indistinguishable, so that IP(Aα,T ) = 1
as well.

Proposition 3.2 (Law of iterated logarithm, Hinčin 1933). Almost surely
one has that

(i) lim supt↓0
Bt(ω)
ψ(1/t)

= lim supt↑∞
Bt(ω)
ψ(t)

= 1,

(ii) lim inft↓0
Bt(ω)
ψ(1/t)

= lim inft↑∞
Bt(ω)
ψ(t)

= −1,

where ψ(t) :=
√

2t log log t.

Proposition 3.3 (Paley, Wiener-Zygmund). Given a standard Brown-
ian motion on a stochastic basis satisfying the usual conditions, one has

IP (ω ∈ Ω : t→ Bt(ω) is nowhere differentiable ) = 1.

Proof. It is sufficient to prove that

IP (∃s ∈ [0, 1) : Bt(ω) differentiable in s) = 0.

Fix s ∈ [0, 1), ω ∈ Ω, and assume that Bt(ω) is differentiable in s. Then
there exists an integer M = M(ω) ≥ 1 such that

|Bt(ω)−Bs(ω)| ≤ M

2
|t− s|
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for all t ∈ [0, 1]. For

t1 =
[ns] + j − 1

n
and t2 =

[ns] + j

n
,

where [x] is the largest integer N ≤ x, with j = 1, ..., n− [ns] one gets that

|Bt1(ω)−Bt2(ω)| ≤ |Bt1(ω)−Bs(ω)|+ |Bt2(ω)−Bs(ω)| ≤M
j

n
.

Hence there is an s ∈ [0, 1) and an M ≥ 1 such that for all n = 1, 2, ... and
j = 1, ..., n− [ns] one has that∣∣∣B [ns]+j−1

n

(ω)−B [ns]+j
n

(ω)
∣∣∣ ≤M

j

n
.

If n is large enough there are at least three possible j. Hence there are M ≥ 1
and m ≥ 1 such that for all n ≥ m there are three subsequent k ∈ {1, ..., n}
such that ∣∣∣B k−1

n
(ω)−B k

n
(ω)
∣∣∣ ≤M

3

n
.

Estimating the probability, where we use Fatou’s lemma, gives that

∞∑
M=1

IP

(
∞⋃
m=1

⋂
n≥m

n−2⋃
i=1

⋂
k=i,i+1,i+2

∣∣∣B k−1
n

(ω)−B k
n
(ω)
∣∣∣ ≤M

3

n

)

=
∞∑

M=1

IP

(
lim inf

n

n−2⋃
i=1

⋂
k=i,i+1,i+2

∣∣∣B k−1
n

(ω)−B k
n
(ω)
∣∣∣ ≤M

3

n

)

≤
∞∑

M=1

lim inf
n

IP

(
n−2⋃
i=1

⋂
k=i,i+1,i+2

∣∣∣B k−1
n

(ω)−B k
n
(ω)
∣∣∣ ≤M

3

n

)

=
∞∑

M=1

lim inf
n

nIP

( ⋂
k=1,2,3

∣∣∣B k−1
n

(ω)−B k
n
(ω)
∣∣∣ ≤M

3

n

)

=
∞∑

M=1

lim inf
n

nIP

(∣∣∣B 1
n
(ω)
∣∣∣ ≤M

3

n

)3

=
∞∑

M=1

lim inf
n

nIP

(
|B1(ω)| ≤M

3√
n

)3
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≤ c
∞∑

M=1

lim inf
n

n

(
M

3√
n

)3

= 0.

Now we turn to the Markov property. A basic example to motivate the
strong Markov property is the Reflection Principle (André, Lévy 1948)
for a standard Brownian motion B = (Bt)t≥0. Given b > 0, we are interested
in the distribution of

τb := inf{t ≥ 0 : Bt = b}.

First we write

IP(τb < t) = IP(τb < t, Bt > b) + IP(τb < t, Bt < b).

Then our heuristic Reflection Principle says that

IP(τb < t, Bt < b) = IP(τb < t, Bt > b). (2)

On the other hand

IP(τb < t,Bt > b) = IP(Bt > b)

which implies

IP(τb < t) = IP(τb < t, Bt > b) + IP(τb < t, Bt < b)

= 2IP(τb < t, Bt > b)

= 2IP(Bt > b).

From this one can deduce at least two things:

• The Brownian motion reaches with probability one any level because

IP(τb <∞) = lim
t→∞

IP(τb < t) = 2 lim
t→∞

IP(Bt > b)

= 2 lim
t→∞

IP

(
B1 >

b√
t

)
= 1.

• One can deduce the distribution of the running maximum of the Brow-
nian motion Mt(ω) := sups∈[0,t] Bs(ω) because

{Mt ≥ b} = {τb ≤ t} so that IP(Mt ≥ b) = 2IP(Bt > b).
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To justify (2) would require a considerable amount of work. Here we only
indicate some concepts around the random time τb : Ω→ [0,∞].

Definition 3.4. Assume a measurable space (Ω,F) equipped with a filtra-
tion (Ft)t≥0. The map τ : Ω→ [0,∞] is called stopping time with respect to
the filtration (Ft)t≥0 provided that

{τ ≤ t} ∈ Ft

for all t ≥ 0. Moreover,

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

In a sense, Fτ contains those events that can be decided until time τ .

Proposition 3.5. Let τ : Ω→ [0,∞] be a stopping time. Then

(i) the system of sets Fτ is a σ-algebra,

(ii) one has {τ ≤ s} ∈ Fτ for s ≥ 0 so that τ is an extended Fτ -measurable
random variable.

Proof. (i) Since ∅ ∩ {τ ≤ t} = ∅ ∈ Ft we have ∅ ∈ Fτ . Assume that
B1, B2, ... ∈ Fτ . Then(

∞⋃
n=1

Bn

)
∩ {τ ≤ t} =

∞⋃
n=1

(Bn ∩ {τ ≤ t}) ∈ Ft.

Finally, for B ∈ Fτ we get that

Bc ∩ {τ ≤ t} = {τ ≤ t} \ (B ∩ {τ ≤ t}) ∈ Ft.

(ii) For s, t ∈ [0,∞) we get that

{τ ≤ s} ∩ {τ ≤ t} = {τ ≤ min {s, t}} ∈ Fmin{s,t} ⊆ Ft.

We conclude the proof by remarking that the system {x ∈ IR : x ≤ t}, t ∈ IR,
generates the Borel σ-algebra and that, trivially, {τ ≤ t} = ∅ ∈ Fτ for
t < 0.
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Example 3.6. Let X = (Xt)t≥0 be continuous and adapted, Γ ⊆ IR be
non-empty, and define the hitting time

τΓ := inf{t ≥ 0 : Xt ∈ B}

with the convention that inf ∅ := ∞. If Γ is open or closed, then τΓ is an
stopping time.

The proof will be an exercise.

As an application we prove

Proposition 3.7. Assume a standard Brownian motion B = (Bt)t≥0 with
B0 ≡ 0. Then, a.s., the Brownian motion changes infinitely often its sign on
[0, ε] for all ε > 0.

Proof. Let (Ft)t≥0 be the augmentation of the natural filtration (used in
Proposition 1.13). We define the stopping times

τ− := inf{t ≥ 0 : Bt < 0} and τ+ := inf{t ≥ 0 : Bt > 0}.

Then {τ− = 0} ∈ F0 and {τ+ = 0} ∈ F0, so that

IP(τ− = 0) ∈ {0, 1} and IP(τ+ = 0) ∈ {0, 1}.

By symmetry IP(τ− = 0) = IP(τ+ = 0). Assuming them to be zero would
imply (exercise) that there is an ε > 0 such that

IP(Bt = 0, t ∈ [0, ε]) > 0

which is impossible (exercise). Hence

IP(τ− = 0) = IP(τ+ = 0) = 1

which implies the claim.

To give a rigorous justification of the reflection principle one would need to
introduce the strong Markov property. In this course we restrict ourselves to
the introduction of the basic concepts.

Definition 3.8. Let (Ω,F , IP; (Ft)t≥0) be a stochastic basis satisfying the
usual assumptions and X = (Xt)t≥0, Xt : Ω→ IR, be a stochastic process.
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(i) The process X is a Markov process provided that X is adapted and for
all s, t ≥ 0 and B ∈ B(IR) one has that

IP(Xs+t ∈ B|Fs) = IP(Xs+t ∈ B|σ(Xs)) a.s.

(ii) The process X is a strong Markov process provided that X is progres-
sively measurable and for all t ≥ 0, stopping times τ : Ω→ [0,∞], and
B ∈ B(IR) one has that, a.s.,

IP({Xτ+t ∈ B} ∩ {τ <∞} |Fτ ) = IP({Xτ+t ∈ B} ∩ {τ <∞} |σ(Xτ )),

where σ(Xτ ) := σ(τ−1(∞), {X−1
τ (B)} ∩ {τ <∞}).

Proposition 3.9. Assume a stochastic basis (Ω,F , IP; (Ft)t≥0) satisfying the
usual conditions and an (Ft)t≥0-Brownian motion B = (Bt)t≥0 like in Defi-
nition 1.11. Then B is a strong Markov process.
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4. Lecture

Stochastic integration

We will define stochastic integrals for local martingales and assume in this
chapter that the usual conditions on the stochastic basis (Ω,F , IP; (Ft)t≥0)
are satisfied.

Definition 4.1. Let (Mt)t≥0 be (Ft)t≥0-adapted.

(i) M is called martingale provided that IE|Mt| <∞ for all t ≥ 0 and

IE(Mt | Fs) = Ms a.s.

for all 0 ≤ s ≤ t <∞.

(ii) We denote by M2,c
0 the space of all martingales M such that all paths

t→Mt(ω) are continuous, M0 ≡ 0, and IEM2
t <∞ for all t ≥ 0.

(iii) M = (Mt)t≥0 is called a continuous local martingale provided that
M0 ≡ 0 and there exists a sequence of stopping times 0 ≤ τ1 ≤ τ2 ≤
τ3 ≤ ... <∞ with limn τn(ω) =∞ for all ω ∈ Ω such that the processes
(Mt∧τn)t≥0 ∈M2,c

0 for all n = 1, 2, .... In this case we write M ∈Mloc,c
0 .

Example 4.2. (i) The Brownian motion is a martingale.

(ii) The geometric Brownian motion S = (St)t≥0 defined by St := eBt−
t
2 is

a martingale.

Proof. (i) For 0 ≤ s < t <∞ one has that, a.s.,

IE(Bt|Fs) = IE(Bt −Bs|Fs) + IE(Bs|Fs) = IE(Bt −Bs) +Bs = Bs.

The proof of (ii) is an exercise.

Proposition 4.3. Let M ∈Mloc,c
0 .

(i) Then there exists a unique adapted path-wise non-decreasing continuous
process 〈M〉 with 〈M〉0 ≡ 0 such that, for all T > 0,

sup
t∈[0,T ]

∣∣∣∣∣
n∑
i=1

|Mt∧tni −Mt∧tni−1
|2 − 〈M〉t

∣∣∣∣∣→IP 0

for any sequence of time nets 0 = tn0 < · · · < tnn < ∞ with
supi=1,...,n |tni − tni−1| →n 0 and tnn →n ∞.
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(ii) The process 〈M〉 is the unique adapted increasing continuous process
starting in zero such that M2 − 〈M〉 is a local martingale.

(iii) If M ∈ M2,c
0 , then the process 〈M〉 is the unique adapted increasing

continuous process starting in zero such that M2−〈M〉 is a martingale.

The process 〈M〉 = (〈M〉t)t≥0 is called quadratic variation of M .

Example 4.4. For the Brownian motion B = (Bt)t≥0 one has that 〈B〉t = t,
t ≥ 0, a.s.

Proof. We get that

IE

∣∣∣∣∣t−
N∑
i=1

[
Bt i

N
−Bt i−1

N

]2

∣∣∣∣∣
2

= t2IE

∣∣∣∣∣1−
N∑
i=1

[
B i

N
−B i−1

N

]2

∣∣∣∣∣
2

= t2IE

∣∣∣∣∣
N∑
i=1

[[
B i

N
−B i−1

N

]2

− 1

N

]∣∣∣∣∣
2

= t2
N∑
i=1

IE

∣∣∣∣[[B i
N
−B i−1

N

]2

− 1

N

]∣∣∣∣2
= t2

N∑
i=1

[IEB4
1 − 1]

1

N2
→N 0.

Proposition 4.5 (Burkholder-Davis-Gundy). For all p ∈ (1,∞) there
is a constant cp > 0 such that

1

cp
‖
√
〈M〉t‖Lp ≤ ‖Mt‖Lp ≤ cp‖

√
〈M〉t‖Lp

for all t ≥ 0 and M ∈Mloc,c
0 .

Given, for example, a Brownian motion B = (Bt)t≥0, we would like to define∫ T

0

LtdBt
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for a large class of stochastic processes L = (Lt)t≥0. A first approach would
be to write ∫ T

0

LtdBt =

∫ T

0

Lt
dBt

dt
dt.

However this is not possible (at least in this naive form) because the Brownian
motion is not differentiable as we learned earlier. So we have to proceed
slightly differently. We will first define the stochastic integral for simple
processes and extend then the definition to an appropriate class of processes.

Definition 4.6. (i) Let M ∈ M2,c
0 . We define L2(M) to be the set of all

progressively measurable L = (Lt)t≥0 such that∫ T

0

IEL2
td〈M〉t <∞

for all T ≥ 0. Moreover, for L ∈ L2(M) we let

|L|L2(M) :=
∞∑
n=1

2−n min

{
1,

√∫ n

0

IEL2
td〈M〉t

}
.

(ii) We let L0 be the space of all simple integrands, i.e. there is a sequence
t0 < t1 < t2 < · · · with limn tn = ∞ and uniformly bounded (in i and
ω) random variables vi : Ω→ IR such that vi is Fti-measurable and

Lt =
∞∑
i=1

vi−1χ(ti−1,ti](t).

Lemma 4.7. For any L ∈ L2(M) there are Ln ∈ L0 such that

lim
n
|L− Ln|L2(M) = 0.

For L ∈ L0 we can easily define a stochastic integral by

IMt (L)(ω) :=
∞∑
i=1

vi−1(ω)(Mti∧t(ω)−Mti−1∧t(ω)).

The key properties of this construction are the following:

Proposition 4.8. For M ∈M2,c
0 and L ∈ L0 one has:
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(i) (IMt (L))t≥0 ∈M2,c
0 .

(ii) For 0 ≤ s ≤ t one has that

IE
(
[IMt (L)− IMs (L)]2|Fs

)
= IE

(∫ t

s

L2
ud〈M〉u|Fs

)
a.s.

Proof. (i) By definition we have that IM0 (L) ≡ 0 and that the process t →
IMt (L)(ω) is continuous for all ω ∈ Ω. Since

vi−1(Mti∧t −Mti−1∧t) =

{
0 : t ≤ ti−1

vi−1(Mti∧t −Mti−1
) : t > ti−1

we get that IMt (L) is Ft-measurable. Now we observe that

IE|vi−1(Mb −Mti−1
)|2 ≤ c2IE|Mb −Mti−1

|2 <∞

for ti−1 ≤ b <∞ so that

(
IE|It(L)|2

) 1
2 ≤

IE

∣∣∣∣∣
n0∑
i=1

vi−1(Mti∧t −Mti−1∧t)

∣∣∣∣∣
2
 1

2

≤
n0∑
i=1

(
IE|vi−1(Mti∧t −Mti−1∧t)|2

) 1
2 <∞

whenever tn0−1 < t ≤ tn0 . It remains to show the martingale property

IE(IMt (L)|Fs) = IMs (L) a.s.

for 0 ≤ s ≤ t <∞. We only check 0 < s ≤ t <∞ and find n0 and m0 such
that tn0−1 < t ≤ tn0 and tm0−1 < s ≤ tm0 . Then, a.s.,

IE(IMt (L)|Fs) = IE

(
n0∑
i=1

vi−1(Mti∧t −Mti−1∧t)|Fs

)

=

n0∑
i=1

IE
(
vi−1(Mti∧t −Mti−1∧t)|Fs

)
.

For 1 ≤ i ≤ m0 − 1 we get

vi−1(Mti∧t −Mti−1∧t) = vi−1(Mti −Mti−1
) = vi−1(Mti∧s −Mti−1∧s)
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which is Fs-measurable. In the case n0 ≥ i ≥ m0 + 1 we may deduce, a.s.,
that

IE(vi−1(Mti∧t −Mti−1∧t)|Fs) = IE(vi−1(Mti∧t −Mti−1
)|Fs)

= IE
(
IE(vi−1(Mti∧t −Mti−1

)|Fti−1
)|Fs

)
= IE

(
vi−1IE(Mti∧t −Mti−1

|Fti−1
)|Fs

)
= IE

(
vi−1(Mti∧t∧ti−1

−Mti−1
)|Fs

)
= 0.

Finally, for i = m0 one obtains, a.s., that

IE(vi−1(Mti∧t −Mti−1∧t)|Fs) = vi−1IE(Mti∧t −Mti−1∧t|Fs)
= vi−1(Mti∧t∧s −Mti−1

)

= vi−1(Mti∧s −Mti−1∧s).

(ii) By introducing new time knots we can assume without loss of generality
that s = tn and t = tN . Let

Xk := IMtk (L) and Gk := Ftk .

Hence, a.s.,

IE
(
[IMt (L)− IMs (L)]2|Fs

)
= IE

(
[XN −Xn]2|Gn

)
= IE

(
N∑

l=n+1

(Xl −Xl−1)2|Gn

)

= IE

(
N∑

l=n+1

v2
l−1(Mtl −Mtl−1

)2|Ftn

)

=
N∑

l=n+1

IE
(
IE(v2

l−1(Mtl −Mtl−1
)2|Ftl−1

)|Ftn
)

=
N∑

l=n+1

IE
(
v2
l−1IE((Mtl −Mtl−1

)2|Ftl−1
)|Ftn

)
=

N∑
l=n+1

IE

(
v2
l−1IE

(∫ tl

tl−1

d〈M〉u|Ftl−1

)
|Ftn

)
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=
N∑

l=n+1

IE

(
v2
l−1

∫ tl

tl−1

d〈M〉u|Ftn

)

= IE

(∫ t

s

L2
ud〈M〉u|Fs

)
.

Proposition 4.9. For M ∈ M2,c
0 and L ∈ L2(M) there exists a unique

martingale X = (Xt)t≥0 ∈M2,c
0 such that for all Ln ∈ L0 with

lim
n
|L− Ln|L2(M) = 0

one has that ‖Xt − IMt (Ln)‖L2 → 0 as n→∞.

A first impression that stochastic integration and usual integration differ
gives

Example 4.10. One has that∫ t

0

BudBu =
1

2
(B2

t − t) for t ≥ 0 a.s.

Now we extend our stochastic integral simultaneously into two directions.
First we enlarge the class of integrands we can use:

Definition 4.11. Let Lloc
2 (M) be the set of all progressively measurable

processes L = (Lt)t≥0 such that

IP

(
ω ∈ Ω :

∫ t

0

L2
u(ω)d〈M〉u(ω) <∞

)
= 1 for all t ≥ 0.

Given M ∈Mloc,c
0 and L ∈ Lloc

2 (M) there exists a sequence of stopping times
τ1 ≤ τ2 ≤ · · · <∞ with limn τn(ω) =∞ such that Mn = (Mt∧τn)t≥0 ∈ M2,c

0

and (Lnt )t≥0 := (Ltχ{t≤τn})t≥0 ∈ L2(Mn) for all n = 1, 2, ...

Proposition 4.12. There exists a unique X ∈Mloc,c
0 such that

IM
n

t (Ln)(ω)χ{t≤τn(ω)} = Xt(ω)χ{t≤τn(ω)}

for t ≥ 0 IP-a.s.
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Definition 4.13. We let∫ t

0

LudMu := Xt and

∫ t

s

LudMu := Xt −Xs.

Now we summarize some of the properties of our stochastic integral:

Proposition 4.14. (i) For K,L ∈ Lloc
2 (M) and α, β ∈ IR one has∫ t

0

(αKu + βLu)dMu = α

∫ t

0

KudMu + β

∫ t

0

LudMu, t ≥ 0, a.s.

(ii) Itô-Isometry: for M ∈ M2,c
0 , K,L ∈ L2(M), and 0 ≤ s < t < ∞ one

has

IE

(∫ t

s

KudMu

∫ t

s

LudMu|Fs
)

= IE

(∫ t

s

KuLud〈M〉u|Fs
)
a.s.

(iii) For L ∈ Lloc
2 (M) and a stopping time τ : Ω→ [0,∞) one has that(∫ t∧τ(ω)

0

LudMu

)
(ω) =

(∫ t

0

Luχ{u≤τ}dMu

)
(ω)

for t ≥ 0 a.s.
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A. For extended reading

It is not easy to find local martingales which are not martingales. We indicate
a construction, but do not go into any details. The example is intended as
motivation for Itô’s formula presented in the next section.

Example 4.15. Given d = 1, 2, ... we let (Wt)t≥0 be the d-dimensional stan-

dard Brownian motion where W
(d)
t := (Bt,1, ..., Bt,d), W0 ≡ 0, and (Bt,i)t≥0

are independent Brownian motions. The filtration is obtained as in the one-
dimensional case as the augmentation of the natural filtration. Let d = 3
and

Mt :=
1

|x+Wt|
with |x| = 2 where | · | is the Euclidean norm on IRd. Then M = (Mt)t≥0 is
a local martingale, but not a martingale.

Proof. To justify the construction one would need the following:
(a) For a d-dimensional standard Brownian motion W with d ≥ 2 the sets
{y} with y 6= 0 are polar sets, that means

IP(τy <∞) = 0 with τy := inf {t ≥ 0 : Wt = y} .

(b) For d ≥ 3 one has that IP(limt→∞ |Wt| =∞) = 1.
(c) Assuming that M is a martingale property we would get IEMt = IEM0 =
1
2
. But a direct computation yields to

IE
1

|x+Wt|
= IE

1

|x+
√
t(g1, g2, g3)|

→t→∞ 0

where g1, g2, g3 ∼ N(0, 1) are independent.
(d) How to show that M is a local martingale? This gives us a first impression
of Itô-formula which will read for f(ξ1, ξ2, ξ3) := 1√

ξ21+ξ22+ξ23
and Xt := x +

(Bt,1, Bt,2, Bt,3) as

f(Xt) = f(x) +
3∑
i=1

∫ t

0

∂f

∂xi
(Xu)dBu,i +

1

2

∫ t

0

(∆f)(Xu)du a.s.

= f(x) +
3∑
i=1

∫ t

0

∂f

∂xi
(Xu)dBu,i

where the latter term turns out to be a local martingale.
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5. and 6. Lecture

Itô’s formula

In calculus there is the fundamental formula

f(y) = f(x) +

∫ y

x

f ′(u)du

for, say, f ∈ C1(IR) and −∞ < x < y < ∞. Is there a similar formula for
stochastic integrals?

Definition 5.1. Let f : [0,∞)→ IR be a function. Then

var(f, t) := sup
0=t0≤···≤tn=t

n∑
k=1

|f(tk)− f(tk−1)| ∈ [0,∞].

The 1-variation var(f, t) is always lower bounded by the quadratic variation
because (

n∑
k=1

|f(tk)− f(tk−1)|2
) 1

2

≤
n∑
k=1

|f(tk)− f(tk−1)|.

More precisely, to require that a process has a bounded variation is strictly
stronger than to require that a process has path-wise a bounded 2-variation.

Lemma 5.2. (i) The function var(f, ·) is increasing.

(ii) If f : [0,∞)→ IR is continuous, then var(f, ·) is left-continuous.

Definition 5.3. A stochastic process A = (At)t≥0, At : Ω → IR, is called of
bounded variation provided that

var(A·(ω), t) = sup
0=t0≤···≤tn=t

n∑
k=1

|Atk(ω)− Atk−1
(ω)| <∞ for all t ≥ 0 a.s.

Lemma 5.4. If M = (Mt)t≥0 ∈Mloc,c
0 is of bounded variation, then

IP (ω ∈ Ω : Mt(ω) = 0, t ≥ 0) = 1.
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Proof. Since M has continuous paths it is sufficient to show that

IP(Mt = 0) = 1 for all t ≥ 0.

(a) First we consider M ∈M2,c
0 . Assume that

var(M·(ω), t) ≤ c <∞ a.s.

and let tni := it
n

. Then

IEM2
t = IE

[
n∑
i=1

[
Mtni
−Mn

ti−1

]]2

=
n∑
i=1

IE
[
Mtni
−Mn

ti−1

]2

≤ IEvar(M·, t) sup
i=1,...,n

∣∣∣Mtni
−Mtni−1

∣∣∣
≤ c IE sup

i=1,...,n

∣∣∣Mtni
−Mtni−1

∣∣∣ .
Since

sup
i=1,...,n

∣∣∣Mtni
(ω)−Mtni−1

(ω)
∣∣∣→n 0

for all ω ∈ Ω by the uniform continuity of the paths of M on compact
intervals and

sup
i=1,...,n

|Mtni
−Mtni−1

| ≤ 2 sup
u∈[0,t]

|Mu| ∈ L2

by Doob’s maximal inequality, majorized convergence implies that

lim
n

IE
∣∣∣Mtni

−Mtni−1

∣∣∣ = 0 so that IEM2
t = 0.

(b) Now let N ∈ {1, 2, ...}, T > 0, and

τN(ω) := inf {t ≥ 0 : var(M·(ω), t) > N} ∧ T.

Because of Lemma 5.2 the random time τN is a stopping time. To check this
it is sufficient to show that

σN(ω) := inf {t ≥ 0 : var(M·(ω), t) > N}
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is a stopping time. Indeed

{t ≤ σN(ω)} = {var(M·(ω), t) ≤ N} ∈ Ft

yields that σN is an optional time, so that we conclude that σN is a stopping
time by the usual conditions. Moreover,

(Mt∧τN )t≥0 ∈M
c,0
2

by the optional stopping theorem and

var(M τN
· (ω), t) ≤ N.

Applying (a) gives
IEM2

τN∧T = 0.

Consequently,

IEM2
T = IE lim

N
M2

T∧τN = lim
N

IEM2
T∧τN = 0

since τN ↑ T a.s. and
M2

T∧τN ≤ sup
t∈[0,T ]

Mt ∈ L1.

(c) Now we assume a local martingale with a localizing sequence (σn)∞n=0 for
M . In addition, we let

ρn := inf {t ≥ 0 : |Mt| ≥ n}

so that τn := σn ∧ ρn is a localizing sequence with |M τn
t | ≤ n. The variation

of M τn is bounded by the variation of M , so that

IP(Mt∧σn = 0) = 1

for all t ≥ 0 and n = 0, 1, 2, ... by (a) and (b). Consequently,

IP(Mt = 0) = IE
(

lim
n→∞

χ{Mt∧τn=0}

)
= lim

n→∞
IE
(
χ{Mt∧τn=0}

)
= 0

where we have used dominated convergence and limn τn(ω) =∞ for all ω ∈
Ω.
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Definition 5.5. A continuous adapted stochastic process X = (Xt)t≥0 is
called continuous semi-martingale provided that

Xt = x0 +Mt + At

where x0 ∈ IR, M ∈Mloc,c
0 , and A is of bounded variation with A0 ≡ 0.

Because of Lemma 5.4 the decomposition is unique.

Proposition 5.6 (Itô’s formula for continuous semimartingales).
Let f ∈ C2(IRd) and Xt = (X1

t , ..., X
d
t ) be a vector of continuous semi-

martingales. Then one has that, a.s.,

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂f

∂xi
(Xu)dX

i
u +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xu)d〈M i,M j〉u

where dX i
u = dM i

u + dAiu and

〈M i,M j〉u :=
1

4

[
〈M i +M j〉u − 〈M i −M j〉u

]
.

Proposition 5.7 (Partial integration). For continuous semi-martingales X
and Y one has that

XtYt = X0Y0 +

∫ t

0

YudXu +

∫ t

0

XudYu + 〈X, Y 〉t a.s.

or, in differential form,

d(XtYt) = YtdXt +XtdYt + d〈X, Y 〉t.

Proof. We take d = 2 and f(x, y) := xy so that, a.s.,

XtYt = f(Xt, Yt)

= f(X0, Y0) +

∫ t

0

∂f

∂x
(Xu, Yu)dXu +

∫ t

0

∂f

∂y
(Xu, Yu)dYu

+
1

2

∫ t

0

∂2f

∂x∂y
(Xu, Yu)d〈X, Y 〉u

+
1

2

∫ t

0

∂2f

∂y∂x
(Xu, Yu)d〈Y,X〉u

= X0Y0 +

∫ t

0

YudXu +

∫ t

0

XudYu +

∫ t

0

d〈X, Y 〉u

because (∂f 2/∂x2) = (∂f 2/∂y2) = 0.
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Proposition 5.8 (Compensator). For M ∈Mloc,c
0 one has that

M2
t − 〈M〉t = 2

∫ t

0

MudMu

is a local martingale.

Proof. One takes d = 1 and f(x) = x2.

The proposition above says that 〈M〉t is the compensation for M2
t to get a

local martingale.

Definition 5.9. A continuous and adapted process X = (Xt)t≥0, Xt : Ω →
IR, is called Itô-process provided there exist L ∈ Lloc

2 (B) and a progressively
measurable process a = (at)t≥0 with∫ t

0

|au(ω)|du <∞

for all t ≥ 0 and ω ∈ Ω and x0 ∈ IR such that

Xt(ω) = x0 +

(∫ t

0

LudBu

)
(ω) +

∫ t

0

au(ω)du for t ≥ 0, a.s.

To formulate Itô’s formula in this case we need

Definition 5.10. A continuous function f : [0,∞) × IR → IR belongs to
C1,2([0,∞) × IR) provided that all partial derivatives ∂f/∂t, ∂f/∂x, and
∂2f/∂x2 exist on (0,∞) × IR, are continuous, and can be continuously ex-
tended to [0,∞)× IR.

Before we state Itô’s formula for Itô-processes we need

Lemma 5.11. Let Mt =
∫ t

0
LudBu for some L ∈ L2(B). Then

〈M〉t =

∫ t

0

L2
udu a.s.
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Proof. By Proposition 4.3 it is sufficient to check that(
M2

t −
∫ t

0

L2
udu

)
t≥0

is a martingale. For 0 ≤ s < t <∞ we have to show that

IE

(
M2

t −
∫ t

0

L2
udu|Fs

)
= M2

s −
∫ s

0

L2
udu a.s.

or

IE
(
M2

t −M2
s |Fs

)
= IE

(∫ t

s

L2
udu|Fs

)
a.s.

Using IE (MtMs|Fs) = MsIE (Mt|Fs) = M2
s a.s., the left-hand side computes

to

IE
(
M2

t −M2
s |Fs

)
= IE

(
M2

t − 2MtMs +M2
s |Fs

)
= IE

(
(Mt −Ms)

2|Fs
)

and the assertion follows from Proposition 4.14.

Proposition 5.12 (Itô’s formula for Itô-processes). Let X = (Xt)t≥0 be
an Itô-process with representation

Xt = x0 +

∫ t

0

LudBu +

∫ t

0

audu, t ≥ 0, a.s.

and let f ∈ C1,2. Then one has that

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂u
(u,Xu)du+

∫ t

0

∂f

∂x
(u,Xu)LudBu

+

∫ t

0

∂f

∂x
(u,Xu)audu+

1

2

∫ t

0

∂2f

∂x2
(u,Xu)L

2
udu

for t ≥ 0 a.s.

Proof. We only indicate the case f ∈ C2(IR2). We let d = 2 and consider
the processes (Yt, Xt) := (t,Xt) and apply the general Itô rule. Since the
martingale part of Y is zero, the only cross variation which is left is 〈M〉
where M is the (local) martingale part of X. Here we use Lemma 5.11 to
deduce ∫ t

0

∂2f

∂x2
(u,Xu)d〈M〉u =

∫ t

0

∂2f

∂x2
(u,Xu)L

2
udu.
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Example 5.13 (Exponential martingales). Let L ∈ C[0,∞) and Xt :=∫ t
0
LudBu. Then

E(X)t := eXt−
1
2

∫ t
0 L

2
udu = eXt−

1
2
〈X〉t

is a martingale and called exponential martingale.

The proof will be an exercise.
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A. For extendend reading: Three applications of Itô’s
formula

A.1 Behavior of the three dimensional Brownian motion

Let B = (B1
t , ..., B

d
t ) a d-dimensional standard Brownian motion where the

filtration is taken to be the augmentation of the natural filtration and the
usual conditions are satisfied. The process

Rt := |x0 +B|

where |·| is the d-dimensional euclidean norm is called d-dimensional Bessel
process starting in x0 ∈ IRd. We want to prove the following

Proposition 5.14. Let d = 3 and 0 < c < r = |x0|. Then one has that

IP

(
inf
t≥0

Rt ≤ c

)
=
c

r
.

Proof. Let

τ := inf {t ≥ 0 : Rt = c} and σk := inf {t ≥ 0 : Rt = k}

for an integer k > r. Let

ρk,n := τ ∧ σk ∧ n.

By Itô’s formula we get

1

Rρk,n

=
1

r
−
∫ ρk,n

0

〈∇f, dB〉u

with f(x) := 1/|x|. Taking the expected value gives

1

r
= IE

1

Rρk,n

=
1

c
IP(τ ≤ σk ∧ n) +

1

k
IP(σk ≤ τ ∧ n) + IE

1

Rn

χ{n<σk∧τ}.

By n→∞ we get that

1

r
=

1

c
IP(τ ≤ σk) +

1

k
IP(σk ≤ τ).

By k →∞ we end up with

1

r
=

1

c
IP(τ <∞).
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A.2 Lévy’s characterization of the Brownian motion

Proposition 5.15. Let (Ω,F , IP; (Ft)t≥0) satisfy the usual conditions and
let M be a path-wise continuous martingale with M0 ≡ 0. Then the following
conditions are equivalent:

(i) M is an (Ft)t≥0-Brownian motion.

(ii) 〈M〉t = t for t ≥ 0 a.s.

Proof. We only have to show that (ii) implies (i). Let

f(x) := eiλx for some λ ∈ IR.

By Itô’s formula (here we ignore, that we have complex numbers),

eiλ(Mt−Ms)χA = χA + χA

∫ t

s

iλeiλ(Mu−Ms)dMu −
λ2

2
χA

∫ t

s

eiλ(Mu−Ms)du

for all A ∈ Fs. Taking the expected value implies that

IEeiλ(Mt−Ms)χA = IP(A)− λ2

2

∫ t

s

IEeiλMu−MsχAdu.

Letting
H(u) := IEeiλMu−MsχA

gives that

H(t) = IP(A)− λ2

2

∫ t

s

H(u)du,

so that H(t) = IP(A)e−
λ2

2
(t−s). This implies that Mt −Ms is independent

from Fs and that Mt −Ms ∼ N(0, t− s).

A.3 Local time

Given a Borel set A ⊆ IR and a Brownian motion B = (Bt)t≥0 we want to
compute the occupation time of B in A until time t, i.e.

Γt(A, ω) :=

∫ t

0

χA(Bs(ω))ds = λ(s ∈ [0, t] : Bs(ω) ∈ A).
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It is not difficult to show that Γt(A, ω) = 0 IP-a.s. if λ(A) = 0 so that one
can ask for a density

Γt(A, ω) =

∫
A

2Lt(x, ω)dx

where the factor 2 is for cosmetics reason.

Definition 5.16. A stochastic process L = (Lt(x, ·))t≥0,x∈IR is called Brow-
nian local time provided that

(i) Lt(x, ·) : Ω→ IR is Ft-measurable,

(ii) there exists Ω0 ∈ F of measure one such that for all ω ∈ Ω0 one has

(a) (t, x)→ Lt(x, ω) is continuous,

(b) Γt(A, ω) =
∫
A

2Lt(x, ω)dx for all Borel sets A ⊆ IR.

To get a candidate for Lt(x, ·) we use Itô’s formula: Let ϕε ∈ C∞0 be such
that supp(ϕε) ⊆ [−ε, ε], ϕε ≥ 0, and

∫
IR
ϕε(x)dx = 1. Let

fε(x) :=

∫ x

−∞

∫ y

−∞
ϕε(u)dudy

so that

f ′ε(x) =

∫ x

−∞
ϕε(u)du,

f ′′ε (x) = ϕε(x).

By Itô’s formula, a.s.

fε(Bt − a) = fε(−a) +

∫ t

0

f ′ε(Bs − a)dBs +
1

2

∫ t

0

f ′′ε (Bs − a)ds

= fε(−a) +

∫ t

0

f ′ε(Bs − a)dBs +
1

2

∫ t

0

ϕε(Bs − a)ds.

Now

IE

∫ t

0

|f ′ε(Bs − a)− χ(0,∞)(Bs − a)|2ds→ 0

and
sup
x
|fε(x)− x+| → 0
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as ε ↓ 0, so that, a.s.,

lim
εn↓0

1

2

∫ t

0

ϕεn(Bs − a)ds = (Bt − a)+ − (−a)+ −
∫ t

0

χ(0,∞)(Bs)dBs

for some sequence εn ↓ 0. But the left-hand side is - formally -

1

2

∫ t

0

δ(Bs − a)ds = Lt(a, ·).

Proposition 5.17 (Trotter). The Brownian local time exists.

Proof. (Idea) (a) Let

Mt(x, ω) := (Bt(ω)− a)+ − (−a)+ −
(∫ t

0

χ(a,∞)(Bs)dBs

)
(ω).

By a version of Kolmogorov’s Proposition 1.8 one can show that there
exists a continuous (in (t, x)) version L = (Lt(x, ·))t≥0,x∈IR of M .
(b) Let −∞ < a1 < a2 < b2 < b1 and define the continuous function h : IR→
IR as h(x) = 1 on [a2, b2], zero outside [a1, b1], and linear otherwise. Let

H(x) :=

∫ x

−∞

∫ y

−∞
h(u)dudy =

∫
IR

(x− u)+du

so that

H ′(x) =

∫ x

−∞
h(u)du =

∫
IR

h(u)χ(u,∞)(x)du

H ′′(x) = h(x).

By Itô’s formula,

1

2

∫ t

0

h(Bs)ds = H(Bt)−H(B0)−
∫ t

0

H ′(Bs)dBs

=

∫
IR

[
(Bt − a)+ − (−u)+ −

∫ t

0

χ(u,∞)(Bs)dBs

]
du

=

∫
IR

h(u)Mt(u, ·)du.

(c) In the last step one has to replace M by L.
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Formally, we also get the following:

Γ((a− ε, a+ ε), ω) =

∫ a+ε

a−ε
2Lt(x, ω)dx

and

lim
ε↓0

1

4ε
Γ((a− ε, a+ ε), ω) = Lt(a, ω).

Proposition 5.18 (Tanaka formulas). One has that, a.s.,

Lt(a) = (Bt − a)+ − (−a)+ −
∫ t

0

χ(a,∞)(Bs)dBs

and

2Lt(a) = |Bt − a| − | − a| −
∫ t

0

sgn(Bs − a)dBs.

Proposition 5.19 (Itô’s formula for convex functions). For a convex func-
tion f and its second derivative µ one has, a.s.,

f(Bt) = f(0) +

∫ t

0

D−f(Bs)dBs +

∫
IR

Lt(x)dµ(x)

where

D−f(x) := lim
h↓0

1

h
[f(x− h)− f(x)]

and µ is determined by

µ([a, b)) := D−f(b)−D−f(a).
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7. Lecture

Stochastic Differential Equations

Stochastic differential equations (SDE’s) play an important role in stochastic
modeling. For example, in Economics solutions of the SDE’s considered be-
low are used to model share prices. In Biology solutions of stochastic partial
differential equations (not considered here) describe sizes of populations.

7.1 Strong solutions of stochastic differential equations

Stochastic differential equations are (for us) a formal abbreviation of integral
equations as described now:

Definition 7.1. Let x0 ∈ IR, D ⊆ IR be an open set, and σ, a : [0,∞)×D →
IR be continuous. A continuous and adapted stochastic process X = (Xt)t≥0

is a solution of the stochastic differential equation (SDE)

dXt = σ(t,Xt)Bt + a(t,Xt)dt with X0 = x0 (3)

provided that the following conditions are satisfied:

(i) Xt(ω) ∈ D for all t ≥ 0 and ω ∈ Ω.

(ii) X0 ≡ x0.

(iii) Xt = x0 +
∫ t

0
σ(u,Xu)dBu +

∫ t
0
a(u,Xu)du for t ≥ 0 a.s.

Let us give some examples of SDE’s.

Example 7.2 (Geometric Brownian motion with drift). If Xt := x0e
cBt+bt

with x0, b, c ∈ IR, then we obtain by Itô’s formula that, a.s.,

Xt = x0 +

∫ t

0

cXudBu +

∫ t

0

bXudu+
1

2

∫ t

0

c2Xudu

= x0 +

∫ t

0

cXudBu +

∫ t

0

[
b+

1

2
c2

]
Xudu

= x0 +

∫ t

0

σXudBu +

∫ t

0

aXudu
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with

σ := c,

a := b+
1

2
c2.

Going the other way round by starting with a and σ, we get that

c = σ,

b = a− 1

2
σ2.

Consequently, the SDE

dXt = σXtdBt + aXtdt with X0 = x0

is solved by

Xt = x0e
σBt+(a− 1

2
σ2)t.

We may use D = IR for σ(t, x) := σx and a(t, x) := ax.

The following examples only provide the formal SDE’s. We do not discuss
solvability at this point.

Example 7.3 (Ornstein-Uhlenback process). Here one considers the
SDE

dXt = −cXtdt+ σdBt with X0 = x0.

Example 7.4 (Vasicek interest rate model). Here one considers that

drt = a(b− rt)dt+ σdBt with r0 ≥ 0,

σ ≥ 0, and a, b > 0 models an interest rate in Stochastic Finance. The
problem with this model is that rt might be negative if σ > 0. If σ = 0, then
one gets as one solution

rt = r0e
−at + b(1− e−at)

so that the meaning of a and b become more clear: the interest rate moves
from its initial value r0 to the value b as t→∞ with a speed determined by
the parameter a. If σ > 0 one tries to add a random perturbation to that.
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7.2 Uniqueness and existence of strong solutions

We shall start with a beautiful lemma, the Gronwall lemma.

Lemma 7.5 (Gronwall). Let A,B, T ≥ 0 and f : [0, T ]→ IR be a contin-
uous function such that

f(t) ≤ A+B

∫ t

0

f(s)ds

for all t ∈ [0, T ]. Then one has that f(T ) ≤ AeBT .

Proof. Letting g(t) := e−Bt
∫ t

0
f(s)ds we deduce

g′(t) = −Be−Bt
∫ t

0

f(s)ds+ e−Btf(t)

= e−Bt
(
f(t)−B

∫ t

0

f(s)ds

)
≤ Ae−Bt

and

g(T ) =

∫ T

0

g′(t)dt ≤ A

∫ T

0

e−Btdt ≤ A

B

(
1− e−BT

)
.

Consequently,

f(T ) ≤ A+B

∫ T

0

f(t)dt = A+BeBTg(T )

≤ A+BeBT
A

B

(
1− e−BT

)
= AeBT .

Proposition 7.6 (Strong uniqueness). Suppose that for all n = 1, 2, ... there
is a constant Cn > 0 such that

|σ(t, x)− σ(t, y)|+ |a(t, x)− a(t, y)| ≤ cn|x− y|

for |x| ≤ n, |y| ≤ n, and t ≥ 0. Assume that (Xt)t≥0 and (Yt)t≥0 are solutions
of the SDE (3). Then

IP (Xt = Yt, t ≥ 0) = 1.
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Proof. We use the stopping times

σn := inf {t ≥ 0 : |Xt| ≥ n} and τn := inf {t ≥ 0 : |Yt| ≥ n}

where we assume that n > |x0|. Letting ρn := min {σn, τn} we obtain, a.s.,
that

Xt∧ρn − Yt∧ρn

=

∫ t∧ρn

0

[a(u,Xu)− a(u, Yu)] du+

∫ t∧ρn

0

[σ(u,Xu)− σ(u, Yu)] dBu.

Hence

IE |Xt∧ρn − Yt∧ρn|
2 ≤ 2IE

∣∣∣∣∫ t∧ρn

0

[a(u,Xu)− a(u, Yu)] du

∣∣∣∣2
+2IE

∣∣∣∣∫ t∧ρn

0

[σ(u,Xu)− σ(u, Yu)] dBu

∣∣∣∣2
≤ 2tIE

∫ t∧ρn

0

|a(u,Xu)− a(u, Yu)|2 du

+2IE

∫ t∧ρn

0

[σ(u,Xu)− σ(u, Yu)]
2 du

≤ (2t+ 2)c2
nIE

∫ t∧ρn

0

|Xu − Yu|2du

≤ (2t+ 2)c2
nIE

∫ t

0

|Xu∧ρn − Yu∧ρn|2du.

Now fix T > 0. The above computation gives

IE |Xt∧ρn − Yt∧ρn|
2 ≤ (2T + 2)c2

n

∫ t

0

IE |Xu∧ρn − Yu∧ρn|
2 du

for t ∈ [0, T ]. For
f(t) := IE |Xt∧ρn − Yt∧ρn|

2

we may apply Gronwall’s lemma. The function f is continuous since for
tk → t one gets

lim
k
f(tk) = lim

k
IE |Xtk∧ρn − Ytk∧ρn|

2
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= IE lim
k
|Xtk∧ρn − Ytk∧ρn|

2

= IE |Xt∧ρn − Yt∧ρn|
2

= f(t)

by dominated convergence as a consequence of (for example)

IE sup
t∈[0,T ]

|Xt∧ρn|
2 ≤ n2

and the continuity of the processes X and Y . Exploiting Gronwall’s lemma
with A := 0 and B := (2T + 2)cn yields

f(T ) ≤ AeBT = 0 and IE |Xt∧ρn − Yt∧ρn|
2 = 0.

Since
lim
n
ρn =∞

because X and Y are continuous processes, we get by Fatou’s lemma that

IE |Xt − Yt|2 = IE lim inf
n
|Xt∧ρn − Yt∧ρn|

2 ≤ lim inf
n

IE |Xt∧ρn − Yt∧ρn|
2 = 0.

Hence IP(Xt = Yt) = 1 and, by the continuity of X and Y ,

IP(Xt = Yt, t ≥ 0) = 1.

Sometimes the assumptions of the above criteria are too strong. There is a
nice extension:

Proposition 7.7 (Yamada-Tanaka). Suppose that

σ, a : [0,∞)× IR→ IR

are continuous such that

|σ(t, x)− σ(t, y)| ≤ h(|x− y|),
|a(t, x)− a(t, y)| ≤ K(|x− y|)

for x, y ∈ IR, where h : [0,∞) → [0,∞) is strictly increasing with h(0) = 0
and K : [0,∞) → IR is strictly increasing and concave with K(0) = 0, such
that ∫ ε

0

du

K(u)
=

∫ ε

0

du

h(u)2
=∞

for all ε > 0. Then any two solutions of (3) are indistinguishable until the
hitting time of the boundary of D.
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Example 7.8. One can take h(x) := xα for α ≥ 1
2
.

However, there is also the following example:

Example 7.9. Let σ : IR→ [0,∞) be continuous such that

(i) σ(x0) = 0,

(ii)
∫ x0+ε

x0−ε
dx

σ2(x)
<∞ and σ(x) ≥ 1 if |x− x0| > ε for some ε > 0.

Then the SDE
dXt = σ(Xt)dBt with X0 = x0

has infinitely many solutions.

Proposition 7.10. Suppose that σ, a : [0,∞)× IR→ IR are continuous such
that

|σ(t, x)− σ(t, y)|+ |a(t, x)− a(t, y)| ≤ K|x− y|,
|σ(t, x)|+ |a(t, x)| ≤ K(1 + |x|)

for all t ≥ 0, x ∈ IR, and some K > 0. Then there exists a solution of the
SDE (3).

Proof. (a) We define a sequence of processes X(k) = (X
(k)
t )t≥0 which con-

verges to our solution:

X
(0)
t := x0,

X
(k+1)
t := x0 +

∫ t

0

σ(u,X(k)
u )dBu +

∫ t

0

a(u,X(k)
u )du.

(b) Let us fix T > 0. By induction we show that

sup
t∈[0,T ]

IE|X(k)
t |2 =: Ak <∞.

For k = 0 this is clear so let us consider the step from k to k + 1 where we
get that

IE|X(k+1)
t |2
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≤ 4

[
|x0|2 + IE

∫ T

0

σ(u,X(k)
u )2du+ IE

∣∣∣∣∫ t

0

a(u,X(k)
u )du

∣∣∣∣2
]

≤ 4

[
|x0|2 +

∫ T

0

K2(1 + |X(k)
u |)2du+ T

∫ T

0

IEK2(1 + |X(k)
u |)2du

]
=: Ak+1 <∞

since IE(1 + |X(k)
u |)2 ≤ 2(1 + Ak).

(c) Now we show some kind of Cauchy sequence property for the sequence
of processes X(k) to obtain an appropriate limit. First we decompose the
difference X

(k+1)
t −X(k)

t almost surely as

X
(k+1)
t −X(k)

t =

∫ t

0

[
σ(u,X(k)

u )− σ(u,X(k−1)
u )

]
dBu

+

∫ t

0

[
a(u,X

(k)
i )− a(u,X(k−1)

u )
]
du

=: Mt + At.

Now

IE sup
t∈[0,T ]

|At|2 ≤ TK2

∫ T

0

IE|X(k)
u −X(k−1)

u |2du

and

IE sup
t∈[0,T ]

|Mt|2 ≤ 4IEM2
T

= 4IE

∫ T

0

∣∣σ(u,X(k)
u )− σ(u,X(k−1)

u )
∣∣2 du

≤ 4K2

∫ T

0

IE
∣∣X(k)

u −X(k−1)
u

∣∣2 du
by Doob’s inequality and Itô’s isometry. Consequently,

IE sup
t∈[0,T ]

∣∣∣X(k+1)
t −X(k)

t

∣∣∣2 ≤ L

∫ T

0

IE|X(k)
u −X(k−1)

u |2du

for L := 2(4K2 + TK2). We iterate the last equation and get

IE sup
t∈[0,T ]

∣∣∣X(k+1)
t −X(k)

t

∣∣∣2
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≤ L2

∫ T

0

∫ u1

0

IE
∣∣X(k−1)

v −X(k−2)
v

∣∣2 dvdu1

≤ Lk
∫ T

0

∫ uk−1

0

· · ·
∫ u1

0

IE
∣∣X1

v − x0

∣∣2 dvdu1 · · · duk−1

≤ Lk
T k

k!
sup
v∈[0,T ]

IE|X(1)
v − x0|2

= c
(LT )k

k!
.

Using Chebychev’s inequality we continue to

IP

(
sup
t∈[0,T ]

∣∣∣X(k+1)
t −X(k)

t

∣∣∣ > 1

2k+1

)
≤ 4k+1c

(LT )k

k!
= (4c)

(4LT )k

k!
.

Now we use the Borel-Cantelli lemma: letting

Ak :=

{
sup
t∈[0,T ]

∣∣∣X(k+1)
t −X(k)

t

∣∣∣ > 1

2k+1

}
we get

∞∑
k=1

IP(Ak) <∞ so that IP

(
∞⋂
k=1

∞⋃
n=k

An

)
= 0

or

IP

(
∞⋃
k=1

∞⋂
n=k

Acn

)
= 1.

Assuming

ω ∈ ΩT
0 :=

∞⋃
k=1

∞⋂
n=k

Acn

we have

sup
t∈[0,T ]

∣∣∣X(n+1)
t (ω)−X(n)

t (ω)
∣∣∣ ≤ 1

2n+1

for n ≥ k(ω). Define

Y
(T )
t (ω) :=

{
limkX

(k)
t (ω) : ω ∈ ΩT

0

0 : ω 6∈ ΩT
0

.
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For this process one can show that it satisfies

Y
(T )
t = x0 +

∫ t

0

σ(u, Y (T )
u )dBu +

∫ t

0

a(u, Y (T )
u )du

on [0, T ]. By the uniqueness argument for the strong solutions we also get
that

IP(Y
(T1)
t = Y

(T2)
t ) = 1

for t ∈ [0,min {T1, T2}]. Hence, as already carried out earlier we may find a
continuous and adapted process X = (Xt)t≥0 such that

IP(Xt = Y
(n)
t ) = 1 for all t ∈ [0, n]

which turns out to be our solution.
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8. Lecture

Transformation of drift

To perform a so-called transformation of drift we need the following result of
Girsanov:

Proposition 8.1 (Girsanov). Let L = (Lt)t≥0 ∈ L2(B) and assume that
the process (Et)t≥0 defined by

Et := exp

(
−
∫ t

0

LudBu −
1

2

∫ t

0

L2
udu

)
is a martingale. Let T > 0 and

dQT := ETdIP.

Then (Wt)t∈[0,T ] with

Wt := Bt +

∫ t

0

Ludu

defines a Brownian motion (Wt)t∈[0,T ] with respect to (Ω,FT , QT , (Ft)t∈[0,T ]).

Lemma 8.2. Let 0 ≤ t ≤ T <∞.

(i) The measures Qt and QT coincide on Ft.

(ii) Assume that Z : Ω → IR is FT -measurable such that IEQT |Z| < ∞.
Then

IEQT (Z|Ft) =
IE(ZET |Ft)
Et

a.s.

Proof. (i) For B ∈ Ft one has

QT (B) =

∫
B

ETdIP =

∫
B

IE(ET |Ft)dIP =

∫
B

EtdIP = Qt(B)

where we have used that (Et)t≥0 is a martingale.
(ii) We show that

IEEtIEQT (|Z||Ft) <∞ and

∫
B

EtIEQT (Z|Ft)dIP =

∫
B

ZETdIP
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for all B ∈ Ft, which follows from

∞ >

∫
Ω

|Z|dQT

=

∫
Ω

IEQT (|Z||Ft)dQT

=

∫
Ω

IEQT (|Z||Ft)dQt

=

∫
Ω

EtIEQT (|Z||Ft)dIP,

and, the other way round, by∫
B

EtIEQT (Z|Ft)dIP =

∫
B

IEQT (Z|Ft)dQt

=

∫
B

IEQT (Z|Ft)dQT

=

∫
B

ZdQT

=

∫
B

ZETdIP.

Proof of Proposition 8.1. We restrict ourselves to Lt ≡ µ ∈ IR. In this case
we have that Wt = Bt + µt which is a Brownian motion with a deterministic
drift. Moreover, using the same argument as in Example 4.2 we derive that
(Et)t≥0 is a martingale.

(a) First we show that (Wt)t∈[0,T ] is a QT -martingale, that means IEQT |Wt| <
∞ and IEQT (WT |Ft) = Wt a.s. for 0 ≤ t ≤ T . The integrability is a
consequence of

IEQT |Wt| =

∫
Ω

|Bt + µt|ETdIP

=

∫
Ω

|Bt + µt|e−µBT−
µ2

2
TdIP

≤
∫

Ω

|Bt|e−µBT−
µ2

2
TdIP + µt

∫
Ω

e−µBT−
µ2

2
TdIP
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=

∫
Ω

√
t|g1|e−µ

√
tg1−µ

√
T−tg2−µ

2

2
TdIP + µt

≤
√
t

∫
Ω

|g1|e−µ
√
tg1dIP

∫
Ω

e−µ
√
T−tg2dIPe−

µ2

2
T + µt

where g1 and g2 are independent standard Gaussian random variables. So
we have to estimate, for an integer n ≥ 0 and c ∈ IR, that∫

Ω

|g|necgdIP =

∫
IR

|ξ|necξe−
ξ2

2
dξ√
2π

<∞

which follows by an easy computation. Now we turn to the martingale prop-
erty. Using Lemma 8.2 we need to show that

IE(WTET |Ft)
Et

= Wt a.s.

which is equivalent to

IE

(
(WT −Wt)

ET
Et
|Ft
)

+WtIE

(
ET
Et
|Ft
)

= Wt a.s.

Since

IE

(
ET
Et
|Ft
)

= 1 a.s.

because (Et)t≥0 is a martingale, we end up by checking that

IE

(
(WT −Wt)

ET
Et
|Ft
)

= 0 a.s.

Again, by independence,

IE

(
(WT −Wt)

ET
Et
|Ft
)

= IE

(
(WT −Wt)

ET
Et

)
a.s.

Finally, we observe, for s := T − t, that

IE

(
(WT −Wt)

ET
Et

)
=

∫
IR

(
√
sξ − µs)e−µ

√
sξ− sµ

2

2
dξ√
2π

= 0.

(b) Now we compute the quadratic variation of W . It should be the same as
the quadratic variation of the Brownian motion B, since the only difference
is a process of 1-variation. Let us take a sequence of nets

0 = tn0 ≤ · · · ≤ tnn = t

57



with
lim
n

max
1≤i≤n

|tni − tni−1| = 0.

We find a subsequence (nk)
∞
k=1 such that

lim
k

n∑
i=1

|Wtni
−Wtni−1

|2 = 〈W 〉t Q-a.s.

Since IP ∼ Q we may replace Q-a.s. by IP-a.s. Finally, we have that

(
n∑
i=1

|Btni
−Btni−1

|2
) 1

2

− µ

(
n∑
i=1

|tni − tni−1|2
) 1

2

≤

(
n∑
i=1

|Wtni
−Wtni−1

|2
) 1

2

≤

(
n∑
i=1

|Btni
−Btni−1

|2
) 1

2

+ µ

(
n∑
i=1

|tni − tni−1|2
) 1

2

.

Since

lim
n

(
n∑
i=1

|tni − tni−1|2
)
≤ lim

n

[
sup
i
|tni − tni−1|

]( n∑
i=1

|tni − tni−1|

)
= lim

n
t sup

i
|tni − tni−1| = 0

it follows that, a.s.,

lim
k

(
nk∑
i=1

|Bt
nk
i
−Bt

nk
i−1
|2
)

= lim
k

(
nk∑
i=1

|Wt
nk
i
−Wt

nk
i−1
|2
)
.

Because of 〈B〉t = t, t ≥ 0, a.s., this implies that

〈W 〉t = t, t ≥ 0, a.s.

Applying Proposition 5.15 we can conclude the proof.

Now we turn to the Novikov condition, an important condition to decide
whether (Et)t≥0 is a martingale.
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Proposition 8.3. Assume that M = (Mt)t∈[0,T ] is a continuous martingale
such that

IEe
1
2
〈M〉T <∞.

Then E = (Et)t∈[0,T ] with

Et := eMt− 1
2
〈M〉t

is a martingale.

Now we come back to our SDE’s and show how the method of the transfor-
mation of drift works.

Proposition 8.4 (Transformation of drift). Let σ, a : [0,∞) × IR → IR be
continuous such that

|σ(t, x)− σ(t, y)|+ |a(t, x)− a(t, y)| ≤ K|x− y|
|σ(t, x)|+ |a(t, x)| ≤ K(1 + |x|)

for all x, y ∈ IR and t ≥ 0. Let X = (Xt)t≥0 be the unique strong solution of

dXt = σ(t,Xt)dBt + a(t,Xt)dt

with X0 ≡ x0 ∈ IR. Let T > 0 and L : [0, T ] × IR → IR be continuous such
that

IEe
1
2

∫ T
0 L(u,Xu)2du <∞

and let

Wt := Bt +

∫ t

0

L(u,Xu)du

for u ∈ [0, T ]. Then, under QT with

dQT := ETdIP where Et := e−
∫ t
0 L(u,Xu)dBu− 1

2

∫ t
0 L(u,Xu)2du,

one has that

dXt = σ(t,Xt)dWt + [a(t,Xt)− σ(t,Xt)L(t,Xt)] dt for t ∈ [0, T ].

What is our philosophy in this case? We wish to solve

dXt = σ(t,Xt)dWt + [a(t,Xt)− σ(t,Xt)L(t,Xt)] dt for t ∈ [0, T ].
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For this purpose we construct a specific Brownian motion W = (Wt)t∈[0,T ]

on an appropriate stochastic basis (Ω,F , QT ; (Ft)t∈[0,T ]) so that this problem
has the solution X = (Xt)t∈[0,T ] which is called weak solution.

Proof of Proposition 8.4. By Propositions 7.6 and 7.10 there is a unique
strong solution X = (Xt)t≥0. Setting

Mt :=

∫ t

0

(−Lu)dBu

we get that (Et)t≥0 is a martingale by Novikov’s condition (Proposition
8.3). The Girsanov Theorem (Proposition 8.1) gives that (Wt)t∈[0,T ] is a
Brownian motion with respect to QT . And finally (and also a bit formally)

dXt = σ(t,Xt)dBt + a(t,Xt)dt

= σ(t,Xt)(dBt + L(t,Xt)dt)− σ(t,Xt)L(t,Xt)dt+ a(t,Xt)dt

= σ(t,Xt)dWt + (a(t,Xt)− σ(t,Xt)L(t,Xt))dt.

Example 8.5. Let σ(t, x) = x, a ≡ 0, x0 = 1, St = eBt−
t
2 , and

IEe
1
2

∫ T
0 L(u,Su)2du <∞.

Then
dSt = StdWt − StL(t, St)dt, t ∈ [0, T ], under QT .

60



A. For extended reading: weak solutions

In the previous section we already indicated the principle of weak solutions:
we do not start with a stochastic basis, we constructed a particular Brownian
motion to our problem. The formal definition is as follows:

Definition 8.6. Assume that σ, a : [0,∞) × IR → IR are measurable and
bounded. A pair (Xt,Wt)t≥0 is a weak solution of

dXt = σ(t,Xt)dWt + a(t,Xt)dt with X0 ≡ x0

if there exits a stochastic basis (Ω,F , Q, (Ft)t≥0) satisfying the usual condi-
tions such that

(i) (Wt)t≥0 is an (Ft)t≥0-Brownian motion,

(ii) Xt = x0 +
∫ t

0
σ(u,Xu)dWu +

∫ t
0
a(u,Xu)du, t ≥ 0, a.s., and X0 ≡ x0.

Let us start with an example of an SDE that has a weak solution, but not a
strong solution.

Example 8.7 (Tanaka). Assume that (Ω,F , IP; (Ft)t≥0) satisfies the usual
conditions and that B is an (Ft)t≥0-Brownian motion and that the filtration
is the augmentation of the natural filtration of B. Then the SDE

dXt = sgn(Xt)dBt with X0 ≡ 0,

with sgn(x) = −1 for x < 0 and sgn(x) = 1 for x ≥ 0, has no strong solution,
but a weak solution.

Proof. (a) Assume that we have a strong solution: By Levy’s theorem the
process X is a Brownian motion as well because,

〈X〉t = t

for t ≥ 0 a.s. Applying Tanaka’s formula gives that

|Xt| =

∫ t

0

sgn(Xs)dXs + 2Lt(0)

=

∫ t

0

sgn(Xs)sgn(Xs)dBs + 2Lt(0)
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= Bt + 2Lt(0).

Consequently, Bt can be expressed (modulo null sets) via |Xt|, so that

FXt ∨N ⊆ FBt ∨N ⊆ F
|X|
t ∨N

which can be shown to be a contradiction, where N is the system of all null
sets of (Ω,F , IP).

(b) The SDE has a weak solution. We start with a Brownian motion X on
(Ω,F , IP; (Ft)t≥0) and let

Wt :=

∫ t

0

sgn(Xs)dXs.

By Levy’s theorem the process W is a Brownian motion as well and we have
that, a.s.,

Xt =

∫ t

0

sgn(Xs)
2dXs =

∫ t

0

sgn(Xs)dWs.

Proposition 8.8. Assume that σ, a : [0,∞) × IR → IR are continuous and
bounded. Then the SDE

dXt = σ(t,Xt)dWt + a(t,Xt)dt with X0 ≡ x0

has a weak solution.

Proof. (Idea) Let us define

Af(t, x) :=
σ(t, x)2

2
f ′′(x) + a(t, x)f ′(x)

for f ∈ C2. Using Itô’s formula and assuming that one has a solution X
one can show that(

f(Xt)− f(X0)−
∫ t

0

Af(s,Xs)ds

)
t≥0

(4)

is a local martingale for f(x) = x and f(x) = x2. The idea is as follows:
Step 1: By an approximation scheme one constructs a continuous stochastic
process X which solves the martingale problem (4) as above.
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Step 2: Letting

Mt := Xt −X0 −
∫ t

0

a(s,Xs)ds

one proves (by using f(x) = x and f(x) = x2) that

〈M〉t =

∫ t

0

σ(s,Xs)
2ds

for t ≥ 0 a.s. From that one constructs a Brownian motion W such that

Mt =

∫ t

0

σ(s,Xs)dWs

and checks that this is the desired solution.

To formulate a connection of weak solutions to strong solutions we introduce
the notion of path-wise uniqueness.

Definition 8.9. The SDE

dXt = σ(u,Xu)dBu + a(u,Xu)du with X0 ≡ x0,

t ≥ 0, a.s., X0 ≡ x0, satisfies the path-wise uniqueness if any two solutions
with respect to the same stochastic basis and Brownian motion are indistin-
guishable.

The application of this concept consists in

Proposition 8.10. The existence of weak solutions together with the path-
wise uniqueness implies the existence of strong solutions.
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9. Lecture

A connection to PDEs

Throughout this section we assume a stochastic basis (Ω,F , IP, (Ft)t∈[0,1]) and
a standard d-dimensional Brownian motion B = (Bt)t∈[0,1], where (Ft)t∈[0,1]

is the augmentation of the natural filtration and F = F1. We consider the
parabolic backwards PDE

∂F

∂t
+

1

2
∆F + g = kF with F (1, x) = f(x)

where

• the potential k : IRd → [0,∞) is continuous,

• the Lagrangian g : [0, 1]× IRd → IR is continuous,

• the terminal condition f : IRd → IR is continuous,

• F : [0, 1]× IRd → IR is continuous and in C1,2 on [0, 1)× IRd.

Proposition 9.1 (Feynman-Kac). Assume that

max
t∈[0,1]

|F (t, x)|+ max
t∈[0,1]

|g(t, x)| ≤ cea|x|
2

and that 0 < a < 1
2d

. Then

F (t, x) =

IE

[
f(x+B1−t)e

−
∫ 1−t
0 k(x+Bs)ds +

∫ 1−t

0

g(t+ θ, x+Bθ)e
−

∫ θ
0 k(x+Bs)dsdθ

]
.

Proof. Let us consider the case d = 1 and let us fix x ∈ IR and 0 < r < 1− t.
Define the process

Aθ :=

∫ θ

0

k(x+Bs)ds

and the function
G(θ, y, a) := F (t+ θ, x+ y)e−a.
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Define the stopping time

τn := inf {s ≥ 0 : |x+Bs| ≥ n} .

An application of Itô’s formula gives

F (t+ (r ∧ τn), x+Br∧τn)e−
∫ r∧τn
0 k(x+Bs)ds

= G(r ∧ τn, Br∧τn , Ar∧τn)

= G(0, B0, A0) +

∫ r∧τn

0

[
∂G

∂θ
+
∂G

∂a
k(x+Bθ) +

1

2

∂G2

∂x2

]
(θ, Bθ, Aθ)dθ

+

∫ r∧τn

0

∂G

∂x
(θ, Bθ, Aθ)dBθ

= F (t, x)−
∫ r∧τn

0

e−
∫ θ
0 k(x+Bs)dsg(t+ θ, x+Bθ)dθ

+

∫ r∧τn

0

e−
∫ θ
0 k(x+Bs)ds

∂F

∂x
(t+ θ, x+Bθ)dBθ.

Taking the expectation and rearranging gives that

F (t, x) = IEF (t+ (r ∧ τn), x+Br∧τn)e−
∫ r∧τn
0 k(Bs)ds

+ IE

∫ r∧τn

0

e−
∫ θ
0 k(Bs)dsg(t+ θ, x+Bθ)dθ.

Now we let n→∞ and r ↑ 1− t so that

F (t, x) = IEF (1, x+B1−t)e
−

∫ 1−t
0 k(Bs)ds

+ IE

∫ 1−t

0

e−
∫ θ
0 k(Bs)dsg(t+ θ, x+Bθ)dθ.

Finally, we observe that F (1, x) = f(x).

If we assume d = 1, g = 0, and k = 0 we get that

F (t, x) = IEf(x+B1−t)

solves the backwards heat equation

∂F

∂t
+

1

2

∂2F

∂x2
= 0 with F (1, x) = f(x).

Another variant of the above result is the famous Black-Scholes PDE in
option pricing:
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Proposition 9.2. Let St := eBt−
t
2 be the geometric Brownian motion, f :

(0,∞)→ IR be a Borel function such that IEf(S1)2 <∞, and

G(t, y) := IEf(yS1−t).

Then

∂G

∂t
(t, y) +

x2

2

∂2G

∂y2
(t, y) = 0 and

∫ 1

0

IE

∣∣∣∣∂G∂y (t, St)

∣∣∣∣2 S2
t dt <∞,

G(t, St) = IEf(S1) +

∫ t

0

∂G

∂y
(u, Su)dSu a.s.

for t ∈ [0, 1), and

f(S1) = IEf(S1) +

∫ 1

0

∂G

∂y
(t, St)dSt a.s.

Before we prove the proposition, let us give an interpretation from option
pricing in Stochastic Finance: The random variable St describes the share
price at time t, f is a pay-off function, G(t, y) is the option price at time t if
the underlying share price equals y, the integrand ∂G

∂y
describes the so-called

δ-hedging strategy.

Proof of Proposition 9.2. (a) Let h : IR→ IR be Borel-measurable and θ > 0.
Assume that ∫

IR

e−θx
2 |h(x)| dx <∞.

Then ψ(s, x) := IEh (x+Ws) exists (and is finite) for (s, x) ∈
(
0, 1

2θ

)
× IR,

has partial derivatives of all orders, and satisfies

∂ψ

∂s
=

1

2

∂2ψ

∂x2
on

(
0,

1

2θ

)
× IR.

(b) Let 1 < q, r <∞ be such that 1
r

= 1
p

+ 1
q
, θ := 1

2r
, and h(x) := f

(
ex−

1
2

)
for x ∈ IR. Assume that f(S1) = h(B1) ∈ Lp. Then∫

IR

e−θx
2 |h(x)|dx =

∫
IR

(
e−

x2

2q

)(
e−

x2

2p |f
(
ex−

1
2

)
|
)
dx

≤
(∫

IR

e−
x2p′
2q dx

) 1
p′
(∫

IR

e−
x2

2 |f
(
ex−

1
2

)
|pdx

) 1
p
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=

(∫
IR

e−
x2p′
2q dx

) 1
p′

(2π)
1
2p ‖f (S1)‖Lp <∞

where 1 = 1/p + 1/p′. Now one can apply (a) to obtain that G ∈
C∞((−ε, 1), (0,∞)) for some ε > 0 and satisfies the claimed PDE. It can
be also shown that

IE sup
t∈[0,b]

∣∣∣∣∂G∂x (t, St)St

∣∣∣∣2 <∞ and

∫ 1

0

IE

∣∣∣∣∂G∂y (t, St)St

∣∣∣∣2 dt <∞
for all b ∈ [0, 1). From this and Itô’s formula we may deduce that

IE(f(S1)|Ft) = G(t, St) = IEf(S1) +

∫ t

0

∂G

∂y
(t, St)dSt a.s.

By t ↑ 1 the assertion follows because ∨t∈[0,1)Ft = F1 and a martingale
convergence theorem.
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10. Lecture

The Cox-Ingersoll-Ross SDE

Here we want to discuss the Cox-Ingersoll-Ross SDE

dXt = (a− bXt)dt+ σ
√
XtdBt with X0 ≡ x0 > 0 (5)

on [0, τ ] where a, σ > 0, b ∈ IR, and

τ(ω) := inf {t ≥ 0 : Xt(ω) = 0} .

Proposition 10.1. There exists a unique continuous and adapted solution
of the SDE (5).

We are not in a position to prove this proposition. The uniqueness can be
deduced by exploiting the uniqueness criteria of Yamada-Tanaka presented
in Proposition 7.7 since

|
√
|x| −

√
|y|| ≤ h(|x− y|)

with h(x) :=
√
x and ∫ ∞

0

dx

h(x)2
=

∫ ∞
0

dx

x
=∞.

What we can do in more detail is to study the quantitative behavior of this
equation in one case.

Proposition 10.2. If a ≥ σ2

2
, then IP(τ =∞) = 1.

Proof. For x,M > 0 we let (Xx
t )t≥0 be the solution of the Cox-Ingersoll-

Ross SDE starting in x > 0 and

τxM(ω) := inf {t ≥ 0 : Xx
t (ω) = M} .

(a) Define

s(x) :=

∫ x

1

e
2by

σ2 y−
2a
σ2 dy.

Then
σ2

2
xs′′(x) + (a− bx)s′(x) = 0
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by an easy computation.
(b) Let 0 < ε < x < M and τxε,M := τxε ∧ τxM . By Itô’s formula

s(Xt∧τxε,M ) = s(x) +

∫ t∧τxε,M

0

s′(Xx
s )dXs +

1

2

∫ t∧τxε,M

0

s′′(Xx
s )σ2Xsds

= s(x) +

∫ t∧τxε,M

0

s′(Xx
s )σ
√
XsdBs

+

∫ t∧τxε,M

0

[
(a− bXx

s )s′(Xx
s ) +

1

2
s′′(Xx

s )σ2Xs

]
ds

= s(x) +

∫ t∧τxε,M

0

s′(Xx
s )σ
√
XsdBs.

(c) Since Xt∧τxε,M ∈ [ε,M ] for all t ≥ 0 we have that

IE

∫ t∧τxε,M

0

s′(Xx
s )2σ2Xsds = IE

∣∣∣s(Xt∧τxε,M

)
− s(x)

∣∣∣2
≤ sup

y∈[ε,M ]

|s(y)|2

=: c

< ∞.

Letting t→∞ gives that

IE

∫ τxε,M

0

s′(Xx
s )2Xsσ

2ds <∞.

Since Xs ≥ ε for s ∈ [0, τxε,M ] by definition and since

s′(x) = e
2bx
σ2 x−

2a
σ2 ≥ e−2

|b|M
σ2 M−2 a

σ2 =: d > 0

we get that

IE

∫ τxε,M

0

ds <∞

so that IEτxε,M <∞ and τxε,M <∞ a.s.
(d) Now

s(x) = IE

(
s(Xx

τxε,M∧t
)−

∫ τxε,M∧t

0

s′(Xx
s )σ
√
Xx
s dBs

)
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and the boundedness of the integrand of the stochastic integral on [0, τxε,M ∧t]
yields that

s(x) = IEs(Xx
τxε,M∧t

).

By t → ∞, dominated convergence, and the fact that τxε,M is almost surely
finite, we conclude that

s(x) = IEs(Xx
τxε,M

) = s(M)IP(τxM < τxε ) + s(ε)IP(τxM > τxε ).

(e) Now we can prove our assertion. First we observe that

lim
ε↓0

s(ε) = lim
ε↓0

∫ ε

1

e
2by

σ2 y−
2a
σ2 dy

= − lim
ε↓0

∫ 1

ε

[
e2b y

σ2

]
y−θdy

= −∞

since θ = 2 a
σ2 ≥ 1. Moreover, IP(τxε < τxM) decreases as ε ↓ 0. Assume that

lim
ε↓0

IP(τxε < τxM) = δ > 0.

Then
s(x) ≤ |s(M)| − lim

ε↓0
s(ε)δ = −∞

which is a contradiction. Hence

lim
ε↓0

IP(τxε < τxM) = 0.

Since τxε is non-decreasing in ε we conclude that

IP(τx0 < τxM) = 0.

Letting M →∞ gives τM(ω) ↑ ∞ so that

IP(τx0 <∞) = lim
M↑∞

IP(τx0 < τxM) = 0.

Hence IP(τx0 =∞) = 1.
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1. Day: Gaussian processes and Brownian motion

(1) Let W = (Wt)t≥0 be a Gaussian process such that

IEWt = 0 and Γ(s, t) = IEWsWt = min(s, t).

(a) Show that IE(Wd−Wc)(Wb−Wa) = 0 if 0 ≤ a ≤ b ≤ c ≤ d. Are the
random variables Wd −Wc and Wb −Wa independent?

(b) Define Yt := tW 1
t

if t > 0 and Y0 := 0. Show that (Yt)t≥0 is a
Gaussian process and compute IEYsYt. Do you recognize the process
(Yt)t≥0?

(2) Let WH = (WH
t )t≥0 be a fractional Brownian motion with Hurst index

H ∈ (0, 1).

(a) Let 0 ≤ s < t <∞. Show that

IE(WH
t −WH

s )WH
s =

{
> 0 : H > 1/2
< 0 : H < 1/2

.

This means that the increments of the process WH correlate nega-
tively if H < 1/2, and positively, if H > 1/2.

(b) Is there a continuous modification Y = (Yt)t≥0 of the process WH =
(WH

t )t≥0 such that all paths of Y are continuous?

(3) Let (Ω,F , IP) be a probability space, F = (Ft)t≥0 a filtration and X =
(Xt)≥0 a stochastic process F-adapted whose paths are continuous for all
ω ∈ Ω. Let t0 > 0 and A ⊆ Ω the set of all ω ∈ Ω such that

sup
|t−t0|≤ε(ω)

Xt(ω) ≤ Xt0(ω)

for some ε(ω) > 0. Is it true that A ∈
⋂
ε>0Ft0+ε?

Homework for the 2nd day:

(1) Is there a modification X = (Xt)t∈[0,1] of the Brownian bridge Y = (Yt)t≥0

such that all the paths of X are continuous?

(2) Let X = (Xt)t∈[0,1] be a Brownian bridge. Define

Yt := (t+ 1)X t
t+1
, t ≥ 0.

Do you recognize the process Y = (Yt)t≥0?
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2. Day: Stopping times and stochastic integrals

(1) Let X = (Xt)t≥0 be continuous and adapted, Γ ⊆ IR be non-empty and
closed, and define the hitting time

τΓ := inf{t ≥ 0 : Xt ∈ Γ}

with the convention that inf ∅ :=∞. Show that τΓ is a stopping time.

(2) Let S = (St)t≥0 be a geometric Brownian motion, defined by

St := eBt−
t
2 ,

where B = (Bt)t≥0 is a standard Brownian motion. Show that S is a
martingale.

(3) Suppose Ω = [0, 1), F = B(IR), and IP = λ, and define

Fn := σ

([
k − 1

2n
,
k

2n

)
: k = 1, . . . , 2n

)
Assume f : [0, 1)→ IR is continuous (and can be continuously extended
to [0, 1]).

(a) Show that g is Fn-measurable if and only if g is constant on the
intervals

[
k−1
2n
, k

2n

)
.

(b) Define

Mn := IE(f | Fn) =
2n∑
k=1

(
2n
∫ k

2n

k−1
2n

f(u)du

)
χ[ k−1

2n
, k
2n )

Show that (Mn)∞n=0 is a martingale wrt. the filtration (Fn)∞n=0.

Homework for the 3rd day:

(1) Suppose that τ, σ : Ω → [0,∞] are two stopping times. Show that the
minimum of the stopping times, τ ∧ σ, is a stopping time.

(2) (Wiener integral) Suppose that L : [0,∞) → IR is a bounded mea-
surable function. Define the process X = (Xt)t≥0 as follows

Xt :=

∫ t

0

LudBu
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(a) Show that X is a Gaussian process, in the case L is a simple func-
tion.

(b) Compute the mean and covariance of the process X.
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3. Day: Itô’s formula

(1) Show that ∫ t

0

BudBu =
1

2
(B2

t − t) for t ≥ 0 a.s.

where B = (Bt)t≥0 is a standard Brownian motion.

(2) Let σ, c > 0 and x ∈ IR. Show that

Xt = xe−ct + σe−ct
∫ t

0

ecsdBs

solves the SDE

dXt = −cXtdt+ σdBt, where X0 = x.

Compute the mean IEXt and variance IE(Xt − IEXt)
2. Is the process

X = (Xt)t≥0 Gaussian?

Hint: You may use the formula∫ t

0

e−cu
∫ u

0

ecsdBsdu =

∫ t

0

∫ t

u

e−csecudsdBu a.s.

(3) Let St = eBt−
t
2 . Find a SDE for the process Xt := 1/St.

(4) Let b ∈ IR. Solve the following SDE:

dXt = XtdBt + bXtdt missä X0 = 1.

Hint: You can use the fact Xt = eαBt−βt, where α, β ∈ IR and Itô’s
formula.

Homework for the 4th day:

(1) Let L ∈ C[0,∞) and Xt :=
∫ t

0
LudBu. Then

E(X)t := eXt−
1
2

∫ t
0 L

2
udu

is a martingale and called exponential martingale.

Hint: You can assume that
∫ t

0
IE(E(X)t)

2du <∞ for all t ≥ 0.
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4. Day: SDEs

(1) Let x ∈ IR and

Xt := xt+ (1− t)
∫ t

0

dBs

1− s
,

where t ∈ [0, 1). Show that

(a) limt↑1 IEX2
t = x2, and

(b) dXt = dBt + x−Xt
1−t dt, if t ∈ [0, 1).

Hint: You may use the identity ′dBuds = dsdB′u.

(2) Let σ : (0,∞)→ (0,∞) and define σ̂ : IR→ (0,∞) by

σ̂(x) :=
σ(ex)

ex
and b̂(x) := −1

2
σ̂2(x).

Assume that σ̂ and σ̂′ are continuous and bounded. Prove that:

(a) The SDE

dXt = σ̂(Xt)dBt + b̂(Xt)dt with X0 = x0

has a unique solution.

(b) The process Y = (Yt)t≥0 with Yt := eXt satisfies the SDE

dYt = σ(Yt)dBt with Y0 = ex0 .

(3) Prove that the SDE

dXt = a(b−Xt)dt+ σ
√
|Xt|dBt with X0 = x0

and σ > 0 has at most one solution.

Hint: Use the criteria of Yamada and Tanaka (Proposition 7.7 of the
lecture notes).

Homework for the 5th day:
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(1) Ornstein-Uhlenbeck process: Prove that the SDE

dXt = −cXtdt+ σdBt with X0 = x0

and σ, c > 0 has a unique solution. Prove by Itô’s formula that the
solution can be written as

Xt = x0e
−ct + σ

∫ t

0

e−c(t−s)dBs.

Hint: f(t, x) := (x0 + σx)e−ct.
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5. Day: SDEs

(1) Consider the differential equation

dXt = 2XtdBt + 5Xtdt with x0 = 1.

(a) Find a measure QT equivalent to P such that the solution X is a
martingale on [0, T ] with respect to QT .

(b) Given an arbitrary solution X. Does X have almost surely positive
trajectories?

(2) Solve the SDE

dSt = StdWt + (µSt − tSt)dt where S0 = 1

where t ∈ [0, T ] and W is a Brownian motion.
Hint: Use the transformation of drift.

Check Your solution by Itô’s formula.

(3) Let 0 < ε < r < c < ∞ and let Wt = (Bt,1, Bt,2) be a two-dimensional
standard Brownian motion starting at (0, r). Let A be the event that the
Brownian motion hits first the circle around zero with radius ε and B
be the event that the Brownian motion hits first the circle around zero
with radius c. Prove that

ln r = IP(A) ln ε+ IP(B) ln c.

Hint: Itô’s formula.

(4) Let (Ω,F , IP, (Ft)t≥0) be a stochastic basis and the process (Xt)t≥0

adapted with respect to the filtration (Ft)t≥0. Suppose Xt − Xs and
Fs are independent for all 0 ≤ s ≤ t <∞ 1. Show that

IP(Xt+s ∈ B|Fs) = Ψ(Xs, B) a.s.

for an appropriate function Ψ.

Remark: From this one can deduce the Markov property

IP(Xt+s ∈ B|Fs) = IP(Xt+s ∈ B|σ(Xs)) a.s.

for all s, t ≥ 0.
1IP({Xt −Xs ∈ B} ∩A) = IP(Xt −Xs ∈ B)IP(A) for all B ∈ B(IR) and A ∈ Fs.
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Examination

General remarks

• Date for examination: 13/06/2007

• Time: 6h (exercises are for 4h)

• Send an e-mail to geiss at maths.jyu.fi with the name and e-mail of a
person I can send the exercises to and which will ’supervise’ You.

• The formulations from the script are the ’official’ ones. Only quadratic
integrable continuous martingales are used.

• In addition to the topics below the exercises are included.

• In case, the examination will not be passed, a retake is possible.

Topics for the examination

1. Gaussian processes and Brownian motion

(a) Definition of a Gaussian process.

(b) Criteria for the existence of a Gaussian process (Proposition 1.3).

(c) Examples: Brownian motion, Brownian bridge, fractional Brown-
ian motion (not the proof of the existence).

(d) Kolmogorov’s criteria for the existence of a continuous modifica-
tion (Proposition 1.8) and its applications (Brownian motion has
Hölder continuous paths with exponent α ∈ (0, 1/2), Brownian
bridge, fractional Brownian motion).

(e) Definition of an (Ft)t≥0 Brownian motion. Proof that the covari-
ance structure implies independent increments.

(f) Paths of the Brownian motion are not differentiable.

(g) Reflection principle.

2. Stopping times

(a) Hitting time of a closed set is a stopping time.
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(b) The minimum and maximum of two stopping times is a stopping
time.

3. Stochastic integrals

(a) Definition and properties of the conditional expectation (Proposi-
tion 3.1.8).

(b) Brownian motion and geometric Brownian motion are martin-
gales.

(c) Quadratic variation of a martingale and equivalent formulation
(Proposition 4.3).

(d) Quadratic variation of the Brownian motion and of the stochastic
integral

∫ t
0
LudBu.

(e) Definition of the stochastic integral (simple and extension) and
properties (Proposition 4.14: i.p. Itô’s isometry).

4. Itô’s formula

(a) General formulation and formulation for Itô processes.

(b) Applications: partial integration, compensator, Levy’s character-
ization of the Brownian motion.

5. Stochastic differential equations

(a) Criterion for uniqueness and existence (Propositions 7.6 and 7.10).

(b) Criteria of Yamada and Tanaka and its application to the Cox-
Ingersoll-Ross SDE.

(c) Girsanov theorem (proposition 8.1) and transformation of drift
(proposition 8.4).

(d) Connection to PDEs.
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